Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 3, 2007

Pore classification in the characterization of porous materials: A perspective

  • Borislav Zdravkov EMAIL logo , Jiří Čermák , Martin Šefara and Josef Janků
From the journal Open Chemistry

Abstract

Classification of pores is one of the basic requisites of comprehensive characterization of porous solids. There are various categorizations of pores described in the literature, but it is difficult to give a consistent global classification of porous substances including catalysts, adsorbents, oxides, carbons, zeolites, organic polymers, soils etc. The purpose of each of these classifications is to organize pores in classes by grouping them on the basis of their common characteristics like structure, size, accessibility, shape etc. In this study, a summary of the most used classifications of porous materials is done. Some common properties or behavior for individual classifications could be found, but many differences mainly in pore size are still subject of intensive discussions. Therefore, it is the purpose of this review to provide a general description of the concept and classification of pores in porous solids, to deal with complexity of the matter and to organise our knowledge in decision-making proccesses of pore characteristics determination.

[1] D. Nicholson: “Using computer simulation to study the properties of molecules in micropores”, J. Chem. Soc., Faraday Trans, Vol. 92(1), (1996), pp. 1–9. http://dx.doi.org/10.1039/ft996920000110.1039/ft9969200001Search in Google Scholar

[2] S. Komarneni, V.C. Menon, R. Pidugu, J. Goworek and W. Stefaniak: “Temperatureprogrammed desorption vs. N2 desorption in determining pore-size distribution of mesoporous silica molecular sieves”,J. Porous Mat., Vol. 3, (1996), pp. 115–119. http://dx.doi.org/10.1007/BF0118604110.1007/BF01186041Search in Google Scholar

[3] S.P. Rigby, R.S. Fletcher and S.N. Riley: “Characterisation of porous solids using integrated nitrogen sorption and mercury porosimetry”, Chem. Eng. Sci., Vol. 59, (2004), pp. 41–51. http://dx.doi.org/10.1016/j.ces.2003.09.01710.1016/j.ces.2003.09.017Search in Google Scholar

[4] D.H. Everett, IUPAC, Manual of Symbol and Terminology for Physicochemical Quantities and Units, Appendix, Definitions, Terminology and Symbols in Colloid and Surface Chemistry, Part I, Pure Appl. Chem., Vol. 31(4), (1972), p. 579. Search in Google Scholar

[5] M.M. Dubinin: “Micropore structures of charcoal adsorbents. 1. A general characterization of micro-and supermicropores in the fissure model”, Proc. Acad. Sci USSR, Vol. 8, (1979), pp. 1691–1696. Search in Google Scholar

[6] P.G. Cheremskoj: Metodi izsleddovania poresti tvurdi tel., Moskwa, Energoatomizdat, 1985 (in Russian). Search in Google Scholar

[7] K.K. Strelov and A.F. Bessonov: Pore Classification in Refractory Materials, Refractories and Industrial Ceramics, Vol. 4(9-10), Springer, New York, 1963, pp. 506–509. 10.1007/BF01292836Search in Google Scholar

[8] K. Kaneko: “Determination of pore size and pore size distribution 1. Adsorbents and catalysts, Review”, J. Membrane Sci., Vol. 96, (1994), pp. 59–89. http://dx.doi.org/10.1016/0376-7388(94)00126-X10.1016/0376-7388(94)00126-XSearch in Google Scholar

[9] J. Kodikara, S.L. Barbour and D.G. Fredlund: “Changes in clay structure and behaviour due to wetting and drying”, In: 8th Australian-New Zealand Conference on Geomechanics, Australian Geomechanics, Hobart, Australia, 1999, pp. 179–186. Search in Google Scholar

[10] International Union of Pure and Applied Chemistry Physical Chemistry Division Commission on Colloid and Surface Chemistry, Subcommittee on Characterization of Porous Solids: “Recommendations for the characterization of porous solids (Technical Report)”, Pure Appl. Chem., Vol. 66(8), (1994), pp. 1739–1758. 10.1351/pac199466081739Search in Google Scholar

[11] M. Ruike, T. Kasu, N. Setoyama, T. Suzuki and K. Kaneko: “Inaccessible pore characterization of less-crystaline microporous solids”, J. Phys. Chem., Vol. 98, (1994), pp. 9594–9600. http://dx.doi.org/10.1021/j100089a03810.1021/j100089a038Search in Google Scholar

[12] E. Boucher: “Porous Materials: Structure, Properties and capillary phenomena review”, J. Mater. Sci., Vol. 11, (1976), pp. 1734–1750. http://dx.doi.org/10.1007/BF0073752910.1007/BF00737529Search in Google Scholar

[13] B. Bindra, O.P. Jasuja and A.K. Singla: “Poroscopy: A Method of personal identification revisited”, Anil Aggrawal’s Internet J. Forensic Medic. Toxic., Vol. 1(1), (2000), http:www.geradts.comanilij/vol_001_no_001paper003.html. Search in Google Scholar

[14] M.M. Dubinin: “The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces”, Chem. Rev., Vol. 60, (1960), pp. 235–241. http://dx.doi.org/10.1021/cr60204a00610.1021/cr60204a006Search in Google Scholar

[15] K.S.W. Sing, D.H. Everett, R.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol and T. Siemieniewska: “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, Pure Appl. Chem., Vol. 57, (1985), p. 603. Search in Google Scholar

[16] IUPAC Manual of symbols and terminology for physicochemical quantities and units, Butterworths, London, 1972. Search in Google Scholar

[17] K. Sakai: “Determination of pore size and pore size distribution, 2. Dialysis membranes, review”, J. Membrane Sci., Vol. 96, (1994), pp. 91–130. http://dx.doi.org/10.1016/0376-7388(94)00127-810.1016/0376-7388(94)00127-8Search in Google Scholar

[18] T.G. Plachenov and S.D. Kolosencev: Porometria, Chimia, Leningrad, 1981. Search in Google Scholar

[19] M.G. Brown and D.A. Cadenhead: “A comparative porosity study of active carbons”, J. Colloid. Interf. Sci., Vol. 70(1), (1979), pp. 139–146. http://dx.doi.org/10.1016/0021-9797(79)90017-110.1016/0021-9797(79)90017-1Search in Google Scholar

[20] K. Kaneko and C. Ishii: “Superhigh surface area determination of microporous solids”, Colloid. Surface., Vol. 67(9), (1992), pp. 203–212. http://dx.doi.org/10.1016/0166-6622(92)80299-H10.1016/0166-6622(92)80299-HSearch in Google Scholar

[21] K. Kaneko, C. Ishii, M. Ruike and H. Kuwabara: “Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons”, Carbon, Vol. 30(7), (1992), pp. 1075–1088. http://dx.doi.org/10.1016/0008-6223(92)90139-N10.1016/0008-6223(92)90139-NSearch in Google Scholar

[22] Y. Shigeno, J.W. Evans and I. Yoh: “Infiltration of microporous activated charcoal by pyrolysis of CH4 and its effect on enhancementof resistance against oxidation”, ISIJ Int., Vol. 37(8), (1997), pp. 738–747. Search in Google Scholar

[23] J.E. Shields and S. Lowell: “Submicropore analysis, short communication”, Powder Technol., Vol. 41, (1985), pp. 269–271. http://dx.doi.org/10.1016/0032-5910(85)80024-310.1016/0032-5910(85)80024-3Search in Google Scholar

[24] R.Z. Wang and Q.B. Wang: “Adsorption mechanism and improvements of the adsorption equation for adsorption refrigeration pairs”, Int. J. Energy Res., Vol. 23, (1999), pp. 887–898 http://dx.doi.org/10.1002/(SICI)1099-114X(199908)23:10<887::AID-ER527>3.0.CO;2-N10.1002/(SICI)1099-114X(199908)23:10<887::AID-ER527>3.0.CO;2-NSearch in Google Scholar

[25] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli and J.S. Beck: “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism”, Nature, Vol. 359, (1992), pp. 710–712. http://dx.doi.org/10.1038/359710a010.1038/359710a0Search in Google Scholar

Published Online: 2007-3-3
Published in Print: 2007-6-1

© 2007 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-007-0017-9/html
Scroll to top button