Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 26, 2013

Boundary regularity of flows under perfect slip boundary conditions

  • Petr Kaplický EMAIL logo and Jakub Tichý
From the journal Open Mathematics

Abstract

We investigate boundary regularity of solutions of generalized Stokes equations. The problem is complemented with perfect slip boundary conditions and we assume that the nonlinear elliptic operator satisfies non-standard ϕ-growth conditions. We show the existence of second derivatives of velocity and their optimal regularity.

[1] Amrouche C., Girault V., Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J., 1994, 44(119)(1), 109–140 10.21136/CMJ.1994.128452Search in Google Scholar

[2] Beirão da Veiga H., On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or nonslip boundary conditions, Comm. Pure Appl. Math., 2005, 58(4), 552–577 http://dx.doi.org/10.1002/cpa.2003610.1002/cpa.20036Search in Google Scholar

[3] Beirão da Veiga H., Navier-Stokes equations with shear-thickening viscosity. Regularity up to the boundary, J. Math. Fluid Mech., 2009, 11(2), 233–257 http://dx.doi.org/10.1007/s00021-008-0257-210.1007/s00021-008-0257-2Search in Google Scholar

[4] Beirão da Veiga H., Navier-Stokes equations with shear-thinning viscosity. Regularity up to the boundary, J. Math. Fluid Mech., 2009, 11(2), 258–273 http://dx.doi.org/10.1007/s00021-008-0258-110.1007/s00021-008-0258-1Search in Google Scholar

[5] Beirão da Veiga H., On the Ladyzhenskaya-Smagorinsky turbulence model of the Navier-Stokes equations in smooth domains. The regularity problem, J. Eur. Math. Soc. (JEMS), 2009, 11(1), 127–167 http://dx.doi.org/10.4171/JEMS/14410.4171/JEMS/144Search in Google Scholar

[6] Beirão da Veiga H., Kaplický P., Růžička M., Boundary regularity of shear thickening flows, J. Math. Fluid Mech., 2011, 13(3), 387–404 http://dx.doi.org/10.1007/s00021-010-0025-y10.1007/s00021-010-0025-ySearch in Google Scholar

[7] Desvillettes L., Villani C., On a variant of Korn’s inequality arising in statistical mechanics, ESIAM Control Optim. Calc. Var., 2002, 8, 603–619 http://dx.doi.org/10.1051/cocv:200203610.1051/cocv:2002036Search in Google Scholar

[8] Diening L., Ettwein F., Fractional estimates for non-differentiable elliptic systems with general growth, Forum Math., 2008, 20(3), 523–556 http://dx.doi.org/10.1515/FORUM.2008.02710.1515/FORUM.2008.027Search in Google Scholar

[9] Diening L., Kaplický P., L q theory for a generalized Stokes system, Manuscripta Math. (in press), DOI: 10.1007/s00229-012-0574-x 10.1007/s00229-012-0574-xSearch in Google Scholar

[10] Diening L., Růžička M., Interpolation operators in Orlicz-Sobolev spaces, Numer. Math., 2007, 107(1), 107–129 http://dx.doi.org/10.1007/s00211-007-0079-910.1007/s00211-007-0079-9Search in Google Scholar

[11] Diening L., Růžička M., Schumacher K., A decomposition technique for John domains, Ann. Acad. Sci. Fenn. Math., 2010, 35(1), 87–114 http://dx.doi.org/10.5186/aasfm.2010.350610.5186/aasfm.2010.3506Search in Google Scholar

[12] Ebmeyer C., Regularity in Sobolev spaces of steady flows of fluids with shear-dependent viscosity, Math. Methods Appl. Sci., 2006, 29(14), 1687–1707 http://dx.doi.org/10.1002/mma.74810.1002/mma.748Search in Google Scholar

[13] Frehse J., Málek J., Steinhauer M., An existence result for fluids with shear dependent viscosity — steady flows, Nonlinear Anal., 1997, 30(5), 3041–3049 http://dx.doi.org/10.1016/S0362-546X(97)00392-110.1016/S0362-546X(97)00392-1Search in Google Scholar

[14] Frehse J., Málek J., Steinhauer M., On existence result for fluids with shear dependent viscosity — unsteady flows, In: Partial Differential Equations, Praha, August 10–16, 1998, Chapman & Hall/CRC Res. Notes Math., 406, Chapman & Hall/CRC, Boca Raton, 2000, 121–129 10.1201/9780203744376-12Search in Google Scholar

[15] Galdi G.P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations. I, Springer Tracts Nat. Philos., 38, Springer, New York, 1994 10.1007/978-1-4612-5364-8Search in Google Scholar

[16] Hlaváček I., Nečas J., On inequalities of Korn’s type, Arch. Rational Mech. Anal., 1970, 36(4), 305–311 http://dx.doi.org/10.1007/BF0024951810.1007/BF00249518Search in Google Scholar

[17] Hlaváček I., Nečas J., On inequalities of Korn’s type II, Arch. Rational Mech. Anal., 1970, 36(4), 312–334 http://dx.doi.org/10.1007/BF0024951910.1007/BF00249519Search in Google Scholar

[18] Kaplický P., Regularity of flows of a non-Newtonian fluid subject to Dirichlet boundary conditions, Z. Anal. Anwendungen, 2005, 24(3), 467–486 http://dx.doi.org/10.4171/ZAA/125110.4171/ZAA/1251Search in Google Scholar

[19] Kaplický P., Regularity of flow of anisotropic fluid, J. Math. Fluid Mech., 2008, 10(1), 71–88 http://dx.doi.org/10.1007/s00021-006-0217-710.1007/s00021-006-0217-7Search in Google Scholar

[20] Kaplický P., Málek J., Stará J., On global existence of smooth two-dimensional steady flows for a class of non-Newtonian fluids under various boundary conditions, In: Applied Nonlinear Analysis, New York, Kluwer/Plenum, 1999, 213–229 10.1007/0-306-47096-9_16Search in Google Scholar

[21] Kaplický P., Málek J., Stará J., C 1,α-solutions to a class of nonlinear fluids in two dimensions — stationary Dirichlet problem, J. Math. Sci. (New York), 2002, 109(5), 1867–1893 http://dx.doi.org/10.1023/A:101444020781710.1023/A:1014440207817Search in Google Scholar

[22] Kaplický P., Málek J., Stará J., Global-in-time Hölder continuity of the velocity gradients for fluids with shear-dependent viscosities, NoDEA Nonlinear Differential Equations Appl., 2002, 9(2), 175–195 http://dx.doi.org/10.1007/s00030-002-8123-z10.1007/s00030-002-8123-zSearch in Google Scholar

[23] Krasnosel’skiĭ M.A., Rutickiĭ Ja.B., Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961 Search in Google Scholar

[24] Ladyzhenskaya O.A., New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems, Proc. Steklov Inst. Math., 1967, 102, 95–118 Search in Google Scholar

[25] Málek J., Nečas J., Rokyta M., Růžička M., Weak and Measure-Valued Solutions to Evolutionary PDEs, Appl. Math. Math. Comput., 13, Chapman & Hall, London, 1996 10.1007/978-1-4899-6824-1Search in Google Scholar

[26] Málek J., Nečas J., Růžička M., On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case p ≥ 2, Adv. Differential Equations, 2001, 6(3), 257–302 Search in Google Scholar

[27] Málek J., Pražák D., Steinhauer M., On the existence and regularity of solutions for degenerate power-law fluids, Differential Integral Equations, 2006, 19(4), 449–462 Search in Google Scholar

[28] Peetre J., A new approach in interpolation spaces, Studia Math., 1970, 34, 23–42 10.4064/sm-34-1-23-42Search in Google Scholar

[29] Rao M.M., Ren Z.D., Theory of Orlicz Spaces, Monogr. Textbooks Pure Appl. Math., 146, Marcel Dekker, New York, 1991 Search in Google Scholar

[30] Troianiello G.M., Elliptic Differential Equations and Obstacle Problems, Univ. Ser. Math., Plenum Press, New York, 1987 10.1007/978-1-4899-3614-1Search in Google Scholar

[31] Wolf J., Interior C 1,α-regularity of weak solutions to the equations of stationary motions of certain non-Newtonian fluids in two dimensions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 2007, 10(2), 317–340 Search in Google Scholar

Published Online: 2013-4-26
Published in Print: 2013-7-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11533-013-0232-x/html
Scroll to top button