Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter June 17, 2012

Cannabinoid-like anti-inflammatory compounds from flax fiber

  • Monika Styrczewska EMAIL logo , Anna Kulma , Katarzyna Ratajczak , Ryszard Amarowicz and Jan Szopa

Abstract

Flax is a valuable source of fibers, linseed and oil. The compounds of the latter two products have already been widely examined and have been proven to possess many health-beneficial properties. In the course of analysis of fibers extract from previously generated transgenic plants overproducing phenylpropanoids a new terpenoid compound was discovered.

The UV spectra and the retention time in UPLC analysis of this new compound reveal similarity to a cannabinoid-like compound, probably cannabidiol (CBD). This was confirmed by finding two ions at m/z 174.1 and 231.2 in mass spectra analysis. Further confirmation of the nature of the compound was based on a biological activity assay. It was found that the compound affects the expression of genes involved in inflammatory processes in mouse and human fibroblasts and likely the CBD from Cannabis sativa activates the specific peripheral cannabinoid receptor 2 (CB2) gene expression. Besides fibers, the compound was also found in all other flax tissues. It should be pointed out that the industrial process of fabric production does not affect CBD activity.

The presented data suggest for the first time that flax products can be a source of biologically active cannabinoid-like compounds that are able to influence the cell immunological response. These findings might open up many new applications for medical flax products, especially for the fabric as a material for wound dressing with anti-inflammatory properties.

[1] Prasad, K. Flaxseed and cardiovascular health. J. Cardiovasc. Pharmacol. 54 (2009) 369–377. http://dx.doi.org/10.1097/FJC.0b013e3181af04e510.1097/FJC.0b013e3181af04e5Search in Google Scholar PubMed

[2] Prasad, K. Hydroxyl radical-scavenging property of secoisolariciresinol diglucoside (SDG) isolated from flax-seed. Mol. Cell. Biochem. 168 (1997) 117–123. http://dx.doi.org/10.1023/A:100684731074110.1023/A:1006847310741Search in Google Scholar

[3] Wang, L., Chen, J. and Thompson, L.U. The inhibitory effect of flaxseed on the growth and metastasis of estrogen receptor negative human breast cancer xenograftsis attributed to both its lignan and oil components, Int. J. Cancer 116 (2005) 793–798. http://dx.doi.org/10.1002/ijc.2106710.1002/ijc.21067Search in Google Scholar PubMed

[4] Muir, A.D. and Westcott, N.D. Flax, the genus Linum, Saskatchewan: T.F. Group, 2003. 10.1201/9780203437506Search in Google Scholar

[5] Huwiler, A. and Pfeilschifter, J. Lipids as targets for novel antiinflammatory therapies. Pharmacol. Ther. 124 (2009) 96–112. http://dx.doi.org/10.1016/j.pharmthera.2009.06.00810.1016/j.pharmthera.2009.06.008Search in Google Scholar PubMed

[6] Russo, G.L. Dietary n-6 and n-3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochem. Pharmacol. 77 (2009) 937–946. http://dx.doi.org/10.1016/j.bcp.2008.10.02010.1016/j.bcp.2008.10.020Search in Google Scholar PubMed

[7] Skorkowska-Telichowska, K., Zuk, M., Kulma, A., Bugajska-Prusak, A., Ratajczak, K., Gasiorowski, K. and Szopa, J. New dressing materials derived from transgenic flax products to treat long-standing venous ulcersa pilot study. Wound. Repair. Regen. 18 (2010) 168–719. http://dx.doi.org/10.1111/j.1524-475X.2010.00578.x10.1111/j.1524-475X.2010.00578.xSearch in Google Scholar PubMed

[8] Lorenc-Kukula, K., Amarowicz, R., Oszmianski, J., Doermann, P., Starzycki, M., Skala, J., Zuk, M., Kulma, A. and Szopa, J. Pleiotropic effect of phenolic compounds content increases in transgenic flax plant. J. Agric. Food Chem. 53 (2005) 3685–3692. http://dx.doi.org/10.1021/jf047987z10.1021/jf047987zSearch in Google Scholar PubMed

[9] Raharjo, T.J., Chang, W.-T., Choi, Y.H., Peltenburg-Looman, A.M.G. and Verpoorte, R. Olivetol as product of a polyketide synthase in Cannabis sativa L. Plant Sci. 166 (2004) 381–385. http://dx.doi.org/10.1016/j.plantsci.2003.09.02710.1016/j.plantsci.2003.09.027Search in Google Scholar

[10] Sirikantaramas, S., Taura, F., Morimoto, S. and Shoyama, Y. Recent advances in Cannabis sativa research: biosynthetic studies and its potential in biotechnology. Curr. Pharm. Biotechnol. 8 (2007) 237–243. http://dx.doi.org/10.2174/13892010778138745610.2174/138920107781387456Search in Google Scholar PubMed

[11] Mechoulam, R., Peters, M., Murillo-Rodriguez, E. and Hanus, L.O. Cannabidiol-recent advances. Chem. Biodivers. 4 (2007) 1678–1692. http://dx.doi.org/10.1002/cbdv.20079014710.1002/cbdv.200790147Search in Google Scholar PubMed

[12] Alexander, A., Smith, P.F. and Rosengren, R.J. Cannabinoids in the treatment of cancer. Cancer Lett. 285 (2009) 6–12. http://dx.doi.org/10.1016/j.canlet.2009.04.00510.1016/j.canlet.2009.04.005Search in Google Scholar PubMed

[13] Ligresti, A., Petrosino, S. and Di Marzo, V. From endocannabinoid profiling to ‘endocannabinoid therapeutics’. Curr. Opin. Chem. Biol. 13 (2009) 321–331. http://dx.doi.org/10.1016/j.cbpa.2009.04.61510.1016/j.cbpa.2009.04.615Search in Google Scholar PubMed

[14] Pacher, P., Batkai, S. and Kunos, G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 58 (2006) 389–462. http://dx.doi.org/10.1124/pr.58.3.210.1124/pr.58.3.2Search in Google Scholar PubMed PubMed Central

[15] Zoratti, C., Kipmen-Korgun, D., Osibow, K., Malli, R. and Graier, W.F. Anandamide initiates Ca(2+) signaling via CB2 receptor linked to phospholipase C in calf pulmonary endothelial cells. Br. J. Pharmacol. 140 (2003) 1351–1362. http://dx.doi.org/10.1038/sj.bjp.070552910.1038/sj.bjp.0705529Search in Google Scholar PubMed PubMed Central

[16] Rajesh, M., Mukhopadhyay, P., Batkai, S., Hasko, G., Liaudet, L., Huffman, J.W., Csiszar, A., Ungvari, Z., Mackie, K., Chatterjee, S. and Pacher, P. CB2-receptor stimulation attenuates TNF-alpha-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyteendothelial adhesion. Am. J. Physiol. Heart Circ. Physiol. 293 (2007) H2210–H2218. http://dx.doi.org/10.1152/ajpheart.00688.200710.1152/ajpheart.00688.2007Search in Google Scholar PubMed PubMed Central

[17] Schatz, A.R., Lee, M., Condie, R.B., Pulaski, J.T. and Kaminski, N.E. Cannabinoid receptors CB1 and CB2: a characterization of expression and adenylate cyclase modulation within the immune system, Toxicol. Appl. Pharmacol. 142 (1997) 278–287. http://dx.doi.org/10.1006/taap.1996.803410.1006/taap.1996.8034Search in Google Scholar PubMed

[18] Klein, T.W. Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat. Rev. Immunol. 5 (2005) 400–411. http://dx.doi.org/10.1038/nri160210.1038/nri1602Search in Google Scholar PubMed

[19] Klein, T.W., Lane, B., Newton, C.A. and Friedman, H. The cannabinoid system and cytokine network. Proc. Soc. Exp. Biol. Med. 225 (2000) 1–8. http://dx.doi.org/10.1046/j.1525-1373.2000.22501.x10.1046/j.1525-1373.2000.22501.xSearch in Google Scholar PubMed

[20] Derocq, J.M., Jbilo, O., Bouaboula, M., Segui, M., Clere, C. and Casellas, P. Genomic and functional changes induced by the activation of the peripheral cannabinoid receptor CB2 in the promyelocytic cells HL-60. Possible involvement of the CB2 receptor in cell differentiation. J. Biol. Chem. 275 (2000) 15621–15628. http://dx.doi.org/10.1074/jbc.275.21.1562110.1074/jbc.275.21.15621Search in Google Scholar PubMed

[21] Wrobel-Kwiatkowska, M., Zebrowski, J., Starzycki, M., Oszmianski, J. and Szopa, J. Engineering of PHB synthesis causes improved elastic properties of flax fibers. Biotechnol. Prog. 23 (2007) 269–277. http://dx.doi.org/10.1021/bp060194810.1021/bp0601948Search in Google Scholar PubMed

[22] Lorenc-Kukula, K., Wrobel-Kwiatkowska, M., Starzycki, M. and Szopa, J. Engineering flax with increased flavonoid content and thus Fusarium resistance. Physiol. Mol. Plant P. 70 (2007) 38–48. http://dx.doi.org/10.1016/j.pmpp.2007.05.00510.1016/j.pmpp.2007.05.005Search in Google Scholar

[23] Boba, A., Kulma, A., Kostyn, K., Starzycki, M., Starzycka, E. and Szopa, J. The influence of carotenoid biosynthesis modification on the Fusarium culmorum and Fusarium oxysporum resistance in flax. Physiol. Mol. Plant P. 76 (2011) 39–47. http://dx.doi.org/10.1016/j.pmpp.2011.06.00210.1016/j.pmpp.2011.06.002Search in Google Scholar

[24] Hazekamp, A., Peltenburg, A., Verpoorte, R. and Giroud, C. Chromatographic and Spectroscopic Data of Cannabinoids from Cannabis sativa L. J. Liq. Chromatog. R.T. 28 (2005) 2361–2382. http://dx.doi.org/10.1080/1082607050018755810.1080/10826070500187558Search in Google Scholar

[25] Gredes, T., Kunert-Keil, C., Dominiak, M., Gedrange, T., Wrobel-Kwiatkowska, M. and Szopa, J. The influence of biocomposites containing genetically modified flax fibers on gene expression in rat skeletal muscle. Biomed. Tech. (Berl). 55 323–329. 10.1515/bmt.2010.048Search in Google Scholar PubMed

[26] Klein, T.W., Newton, C., Larsen, K., Lu, L., Perkins, I., Nong, L. and Friedman, H. The cannabinoid system and immune modulation. J. Leukoc. Biol. 74 (2003) 486–496. http://dx.doi.org/10.1189/jlb.030310110.1189/jlb.0303101Search in Google Scholar PubMed

[27] Klegeris, A., Bissonnette, C.J. and McGeer, P.L. Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. Br. J. Pharmacol. 139 (2003) 775–786. http://dx.doi.org/10.1038/sj.bjp.070530410.1038/sj.bjp.0705304Search in Google Scholar PubMed PubMed Central

[28] Matsuda, L.A., Lolait, S.J., Brownstein, M.J., Young, A.C. and Bonner, T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346 (1990) 561–564. http://dx.doi.org/10.1038/346561a010.1038/346561a0Search in Google Scholar PubMed

[29] Munro, S., Thomas, K.L. and Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365 (1993) 61–65. http://dx.doi.org/10.1038/365061a010.1038/365061a0Search in Google Scholar PubMed

[30] McAllister, S.D. and Glass, M. CB1 and CB2 receptor-mediated signalling: a focus on endocannabinoids. Prostag. Leukotr. Ess. 66 (2002) 161–171. http://dx.doi.org/10.1054/plef.2001.034410.1054/plef.2001.0344Search in Google Scholar PubMed

[31] Howlett, A.C. Cannabinoid receptor signaling. Handb. Exp. Pharmacol. (2005) 53–79. 10.1007/3-540-26573-2_2Search in Google Scholar

[32] Doyle, S.L. and O’Neill, L.A.J. Toll-like receptors: From the discovery of NF[kappa]B to new insights into transcriptional regulations in innate immunity. Biochem. Pharmacol. 72 (2006) 1102–1113. http://dx.doi.org/10.1016/j.bcp.2006.07.01010.1016/j.bcp.2006.07.010Search in Google Scholar

[33] Kawai, T. and Akira, S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol. Med. 13 (2007) 460–469. http://dx.doi.org/10.1016/j.molmed.2007.09.00210.1016/j.molmed.2007.09.002Search in Google Scholar

[34] Libermann, T.A. and Baltimore, D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol. Cell. Biol. 10 (1990) 2327–2334. Search in Google Scholar

[35] Watts, T.H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol. 23 (2005) 23–68. http://dx.doi.org/10.1146/annurev.immunol.23.021704.11583910.1146/annurev.immunol.23.021704.115839Search in Google Scholar

[36] Ryo, A., Suizu, F., Yoshida, Y., Perrem, K., Liou, Y.C., Wulf, G., Rottapel, R., Yamaoka, S. and Lu, K.P. Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell 12 (2003) 1413–1426. http://dx.doi.org/10.1016/S1097-2765(03)00490-810.1016/S1097-2765(03)00490-8Search in Google Scholar

Published Online: 2012-6-17
Published in Print: 2012-9-1

© 2012 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-012-0023-6/html
Scroll to top button