Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter July 27, 2013

Tubulin-interactive stilbene derivatives as anticancer agents

  • Renata Mikstacka EMAIL logo , Tomasz Stefański and Jakub Różański

Abstract

Microtubules are dynamic polymers that occur in eukaryotic cells and play important roles in cell division, motility, transport and signaling. They form during the process of polymerization of α- and β-tubulin dimers. Tubulin is a significant and heavily researched molecular target for anticancer drugs. Combretastatins are natural cis-stilbenes that exhibit cytotoxic properties in cultured cancer cells in vitro. Combretastatin A-4 (3′-hydroxy-3,4,4′, 5-tetramethoxy-cis-stilbene; CA-4) is a potent cytotoxic cis-stilbene that binds to β-tubulin at the colchicine-binding site and inhibits tubulin polymerization. The prodrug CA-4 phosphate is currently in clinical trials as a chemotherapeutic agent for cancer treatment. Numerous series of stilbene analogs have been studied in search of potent cytotoxic agents with the requisite tubulin-interactive properties. Microtubule-interfering agents include numerous CA-4 and transresveratrol analogs and other synthetic stilbene derivatives. Importantly, these agents are active in both tumor cells and immature endothelial cells of tumor blood vessels, where they inhibit the process of angiogenesis. Recently, computer-aided virtual screening was used to select potent tubulin-interactive compounds. This review covers the role of stilbene derivatives as a class of antitumor agents that act by targeting microtubule assembly dynamics. Additionally, we present the results of molecular modeling of their binding to specific sites on the α- and β-tubulin heterodimer. This has enabled the elucidation of the mechanism of stilbene cytotoxicity and is useful in the design of novel agents with improved anti-mitotic activity. Tubulin-interactive agents are believed to have the potential to play a significant role in the fight against cancer.

[1] Butler, M.S. Natural products to drugs: natural product-derived compounds in clinical trials. Nat. Prod. Rep. 25 (2008) 475–516. http://dx.doi.org/10.1039/b514294f10.1039/b514294fSearch in Google Scholar PubMed

[2] Pettit, G.R., Cragg, G.M., Herald, D.L., Schmidt, J.M. and Lobavanijaya, P. Antineoplastic agents. Part 84. Isolation and structure of combretastatin. Can. J. Chem. 60 (1982) 1374–1376. http://dx.doi.org/10.1139/v82-20210.1139/v82-202Search in Google Scholar

[3] Tron, G.C., Pirali, T., Sorba, G., Pagliai, F., Busacca, S. and Genazzani, A. Medicinal chemistry of combretastatin A-4: present and future directions. J. Med. Chem. 49 (2006) 3033–3044. http://dx.doi.org/10.1021/jm051290310.1021/jm0512903Search in Google Scholar PubMed

[4] Siemann, D.W., Chaplin, D.J. and Walicke, P.A. A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P). Exp. Opin. Invest. Drugs 18 (2009) 189–197. http://dx.doi.org/10.1517/1354378080269106810.1517/13543780802691068Search in Google Scholar PubMed PubMed Central

[5] Desai, A. and Mitchison, T.J. Microtubule polymerization dynamics. Ann. Rev. Cell Dev. Biol. 13 (1997) 83–117. http://dx.doi.org/10.1146/annurev.cellbio.13.1.8310.1146/annurev.cellbio.13.1.83Search in Google Scholar PubMed

[6] Nogales, E., Wolf, S.G., and Downing, K.H. Structure of the αβ-tubulin dimer by electron crystallography. Nature 391 (1998) 199–203. http://dx.doi.org/10.1038/3446510.1038/34465Search in Google Scholar PubMed

[7] Mitchison, T. and Kirscher, M. Microtubule assembly nucleated by isolated centrosomes. Nature 312 (1984) 232–237. http://dx.doi.org/10.1038/312232a010.1038/312232a0Search in Google Scholar PubMed

[8] Wang, H.W. and Nogales, E. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435 (2005) 911–915. http://dx.doi.org/10.1038/nature0360610.1038/nature03606Search in Google Scholar PubMed PubMed Central

[9] Akhmanova, A., and Steinmetz, M.O. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat. Rev. Mol. Cell Biol. 9 (2008) 309–322. http://dx.doi.org/10.1038/nrm236910.1038/nrm2369Search in Google Scholar PubMed

[10] Kline-Smith, S.L. and Walczak, C.E. Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics. Mol. Cell 15 (2004) 317–327. http://dx.doi.org/10.1016/j.molcel.2004.07.01210.1016/j.molcel.2004.07.012Search in Google Scholar PubMed

[11] Kwon, M. and Scholey, J.M. Spindle mechanics and dynamics during mitosis in Drosophila. Trends Cell Biol. 14 (2004) 194–205. http://dx.doi.org/10.1016/j.tcb.2004.03.00310.1016/j.tcb.2004.03.003Search in Google Scholar PubMed

[12] Rieder, C.L., Davison, E.A., Jensen, L.C., Cassimeris, L. and Salomon, E.D. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J. Cell Biol. 103 (1986) 581–591. http://dx.doi.org/10.1083/jcb.103.2.58110.1083/jcb.103.2.581Search in Google Scholar PubMed PubMed Central

[13] Higuchi, T. and Uhlmann, F. Stabilization of microtubule dynamics at anaphase onset promotes chromosome segregation. Nature 433 (2005) 171–176. http://dx.doi.org/10.1038/nature0324010.1038/nature03240Search in Google Scholar PubMed PubMed Central

[14] Rieder, C.L., Schultz, A., Cole, R. and Sluder, G. Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J. Cell Biol. 127 (1994) 1301–1310. http://dx.doi.org/10.1083/jcb.127.5.130110.1083/jcb.127.5.1301Search in Google Scholar PubMed PubMed Central

[15] Jordan, M.A. and Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4 (2004) 253–265. http://dx.doi.org/10.1038/nrc131710.1038/nrc1317Search in Google Scholar PubMed

[16] Singh, P., Rathinasamy, K., Mohan, R. and Panda, D. Microtubule assembly dynamics: an attractive target for anticancer drugs. IUBMB Life 60 (2008) 368–375. http://dx.doi.org/10.1002/iub.4210.1002/iub.42Search in Google Scholar PubMed

[17] Bhattacharyya, B., Panda, D., Gupta, S., and Banerjee, M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med. Res. Rev. 28 (2008) 155–183. http://dx.doi.org/10.1002/med.2009710.1002/med.20097Search in Google Scholar PubMed

[18] Ravelli, R.B., Gigant, B., Curmi P.A., Jourdain, I., Lachkar, S., Sobel, A. and Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428 (2004) 198–202. http://dx.doi.org/10.1038/nature0239310.1038/nature02393Search in Google Scholar PubMed

[19] Gigant, B., Wang, C., Ravelli, R.B.G., Roussi, F., Steinmetz, M.O., Curmi, P.A., Sobel, A. and Knossow, M. Structural basis for the regulation of tubulin by vinblastine. Nature 435 (2005) 519–522. http://dx.doi.org/10.1038/nature0356610.1038/nature03566Search in Google Scholar PubMed

[20] Chakraborti, S., Das, L., Kapoor, N., Das, A., Dwivedi, V., Poddar, A., Chakraborti, G., Janik, M., Basu, G., Panda, D., Chakrabarti, P., Surolia, A. and Bhattacharyya, B. Curcumin recognizes a unique binding site of tubulin. J. Med. Chem. 54 (2011) 6183–6196. http://dx.doi.org/10.1021/jm200404610.1021/jm2004046Search in Google Scholar PubMed

[21] Kingston, D.G.I. Tubulin-interactive natural products as anticancer agents. J. Nat. Prod. 72 (2009) 507–515. http://dx.doi.org/10.1021/np800568j10.1021/np800568jSearch in Google Scholar

[22] Nogales, E., Wolf, S.G., Khan, I.A., Luduena, R.F. and Downing, K.H. Structure of tubulin at 6.5 Å and location of the taxol-binding site. Nature 375 (1995) 424–427. http://dx.doi.org/10.1038/375424a010.1038/375424a0Search in Google Scholar

[23] Li, H., Wu, W.K.K., Zheng, A., Che, C.T., Yu, L., Li, Z.J., Wu, Y.C., Cheng, K.-W., Yu, J., Cho, C.H. and Wang, M. 2,3′,4,4′,5′-Pentamethoxytrans-stilbene, a resveratrol derivative, is a potent inducer of apoptosis in colon cancer cells via targeting microtubules. Biochem. Pharmacol. 78 (2009) 1224–1232. http://dx.doi.org/10.1016/j.bcp.2009.06.10910.1016/j.bcp.2009.06.109Search in Google Scholar

[24] Goncalves, A., Braguer, D., Carles, G., Andre, N., Prevot, C. and Briand, C. Caspase-8 activation independent of CD95/CD95-L interaction during paclitaxel-induced apoptosis in human colon cancer (HT29-D4). Biochem. Pharmacol. 60 (2000) 1579–1584. http://dx.doi.org/10.1016/S0006-2952(00)00481-010.1016/S0006-2952(00)00481-0Search in Google Scholar

[25] Siemann, D.W., Bibby, M.C., Dark, G.G., Dicker, A.P., Eskens, F.A., Horsman, M.R., Marmé, D. and LoRusso, P.M. Differentiation and definition of vascular-targeted therapies. Clin. Cancer Res. 11 (2005) 416–420. Search in Google Scholar

[26] Mason, R.P., Zhao, D., Liu, L., Trawick, M.L. and Pinney, K.G. A perspective on vascular disrupting agents that interact with tubulin: preclinical tumor imaging and biological assessment. Integr. Biol (Camb.) 3 (2011) 375–387. http://dx.doi.org/10.1039/c0ib00135j10.1039/c0ib00135jSearch in Google Scholar PubMed PubMed Central

[27] Siemann, D.W. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat. Rev. 37 (2011) 63–74. http://dx.doi.org/10.1016/j.ctrv.2010.05.00110.1016/j.ctrv.2010.05.001Search in Google Scholar PubMed PubMed Central

[28] Jockowich, M.E., Suarez, F., Alegret, A., Pina, Y., Hayden, B., Cebulla, C., Feuer, W. and Murray, T.G. Mechanism of retinoblastoma tumor cell death after focal chemotherapy, radiation, and vascular targeting therapy in a mouse model. Invest. Ophthalmol. Vis. Sci. 48 (2007) 5371–5376. http://dx.doi.org/10.1167/iovs.07-070810.1167/iovs.07-0708Search in Google Scholar PubMed

[29] Nambu, H., Nambu, R., Melia, M. and Campochiaro, P.A. Combretastatin A-4 phosphate supresses development and induces regression of choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 44 (2003) 3650–3655. http://dx.doi.org/10.1167/iovs.02-098510.1167/iovs.02-0985Search in Google Scholar PubMed

[30] Ma, L., Liu, Y.L., Ma, Z.Z., Dou, H.L., Xu, J.H., Wang, J.C., Zhang, X. and Zhang, Q. Targeted treatment of choroidal neovascularization using integrinmediated sterically stabilized liposomes loaded with combretastatin A4. J. Ocul. Pharmacol. Ther. 25 (2009) 195–200. http://dx.doi.org/10.1089/jop.2008.011910.1089/jop.2008.0119Search in Google Scholar PubMed

[31] Pettit, G.R. and Singh, S., Antineoplastic agents. Part 130. Isolation, structure and synthesis of combretastatins A-2, A-3, and B-2. Can. J. Chem. 65 (1987) 2390–2396. http://dx.doi.org/10.1139/v87-39910.1139/v87-399Search in Google Scholar

[32] Pettit, G.R., Singh, S.B., Niven, M.L., Hamel, E. and Schmidt, J.M. Antineoplastic agents. Part 123. Isolation, structure, and synthesis of combretastatin A-1 and B-1, potent new inhibitors of microtubule assembly, derived from Combretum caffrum. J. Nat. Prod. 50 (1987) 119–131. http://dx.doi.org/10.1021/np50049a01610.1021/np50049a016Search in Google Scholar PubMed

[33] Pettit, G.R., Singh, S.B., Niven, M.L., Hamel, E., Lin, C.M., Alberts, D.S. and Garcia-Kendall, D. Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia 45 (1989) 209–211. http://dx.doi.org/10.1007/BF0195488110.1007/BF01954881Search in Google Scholar PubMed

[34] Pinney, K.G., Pettit, G.R., Trawick, M.L., Jelinek, C. and Chaplin, D.J. The discovery and development of the combretastatins. in: Anticancer Agents from Natural Products, (Cragg, G.R., Kingston, D.G.I. and Newman, D.J. Eds.) 2nd edition, CRC Press/Taylor & Francis, Boca Raton, FL, 2012, 27–63. 10.1201/b11185-4Search in Google Scholar

[35] Chaudhary, A., Pandeya, S.N., Kumar, P., Sharma, P., Gupta, S., Soni, N., Verma, K.K. and Bhardwaj, G. Combretastatin A-4 Analogs as Anticancer Agents. Mini-Rev. Med. Chem. 7 (2007) 1186–1205. http://dx.doi.org/10.2174/13895570778279564710.2174/138955707782795647Search in Google Scholar PubMed

[36] Tozer, G.M., Kanthou, C., Parkins, C.S. and Hill, S.A. The biology of the combretastatins as tumour vascular targeting agents. Int. J. Exp. Pathol. 83 (2001) 21–38. http://dx.doi.org/10.1046/j.1365-2613.2002.00211.x10.1046/j.1365-2613.2002.00211.xSearch in Google Scholar PubMed PubMed Central

[37] Thorpe, E.P. Vascular targeting agents as cancer therapeutics. Clin. Cancer Res. 10 (2004) 415–427. http://dx.doi.org/10.1158/1078-0432.CCR-0642-0310.1158/1078-0432.CCR-0642-03Search in Google Scholar PubMed

[38] Xia, Y., Yang, A.-Y., Xia, P., Bastow, K.F., Tachibana, Y., Kuo, S.-C., Hamel, E., Hacki, T. and Lee, K.-H. J. Antitumor agents. 181. Synthesis and biological evaluation of 6,7,2′,3′,4′-substituted-1,2,3,4-tetrahydro-2-phenyl-4-quinolones as a new class of anti-mitotic antitumor agents. Med. Chem. 41 (1998) 1155–1162. http://dx.doi.org/10.1021/jm970747910.1021/jm9707479Search in Google Scholar PubMed

[39] Wu, M., Sun, Q., Yang, C., Chen, D., Ding, J., Chen, Y., Lin, L. and Xie, Y. Synthesis and activity of combretastatin A-4 analogues: 1,2,3-thiadiazoles as potent antitumor agents. Bioorg. Med. Chem. Lett. 17 (2007) 869–873. http://dx.doi.org/10.1016/j.bmcl.2006.11.06010.1016/j.bmcl.2006.11.060Search in Google Scholar PubMed

[40] Sriram, M., Hall, J.J., Grohmann, N.C., Strecker, T.E., Wootton, T., Franken, A., Trawick, M.L. and Pinney, K.G. Design, synthesis and biological evaluation of dihydronaphthalene and benzosuberene analogs of the combretastatins as inhibitiors of tubulin polymerization in cancer chemotherapy. Bioorg. Med. Chem. 16 (2008) 8161–8171. http://dx.doi.org/10.1016/j.bmc.2008.07.05010.1016/j.bmc.2008.07.050Search in Google Scholar PubMed

[41] Pettit, G.R., Toki, B.E., Herald, D.L., Boyd, M.R., Hamel, E., Pettit, R.K. and Chapuis, J.-C. J. Antineoplastic agents. 410. Asymetric hydroxylation of trans-combretastatin A-4. Med. Chem. 42 (1999) 1459–1465. http://dx.doi.org/10.1021/jm980714910.1021/jm9807149Search in Google Scholar PubMed

[42] Cai, S.X. Small molecule vascular disrupting agents: potential new drugs for cancer treatment. Recent Pat. Anticancer Drug Discov. 2 (2007) 79–101. http://dx.doi.org/10.2174/15748920777956146210.2174/157489207779561462Search in Google Scholar

[43] Salmon, H.W. and Siemann, D.W. Effect of the second generation vascular disrupting agent OXi4503 on tumor vascularity. Clin. Cancer Res. 12 (2006) 4090–4094. http://dx.doi.org/10.1158/1078-0432.CCR-06-016310.1158/1078-0432.CCR-06-0163Search in Google Scholar

[44] Thomson, P., Naylor, M.A., Everett, S.A., Stratford, H.R.L., Lewis, G., Hill, S., Patel, K.B., Wardman, P. and Davis, P.D. Synthesis and biological properties of bioreductively targeted nitrothienyl prodrugs of combretastatin A-4. Mol. Cancer Ther. 5 (2006) 2886–2894. http://dx.doi.org/10.1158/1535-7163.MCT-06-042910.1158/1535-7163.MCT-06-0429Search in Google Scholar

[45] Calligaris, D., Verdier-Pinard, P., Devred, F., Villard, C., Braguer, D. and Lafitte, D. Microtubule targeting agents: from biophysics to proteomics. Cell. Mol. Life Sci. 67 (2010) 1089–1104. http://dx.doi.org/10.1007/s00018-009-0245-610.1007/s00018-009-0245-6Search in Google Scholar

[46] Griggs, J., Skepper, J.N., Smith, G.A., Brindle, K.M., Metcalfe, J.C. and Hesketh, R. Inhibition of proliferative retinopathy by the antivascular agent combretastatin A-4. Am. J. Pathol. 160 (2002) 1097–1103. http://dx.doi.org/10.1016/S0002-9440(10)64930-910.1016/S0002-9440(10)64930-9Search in Google Scholar

[47] Delmonte, A. and Sessa, C. AVE8062: A new combretastatin derivative vascular disrupting agent. Expert Opin. Investig. Drugs 18 (2009) 1541–1548. http://dx.doi.org/10.1517/1354378090321369710.1517/13543780903213697Search in Google Scholar PubMed

[48] Kim, T.J., Ravoori, M., Landen, C.N., Kamatt, A.A., Han, L.Y., Lu, C., Lin, Y.G., Merritt, W.M., Jennings, N., Spannuth, W.A., Langley, R., Gershenson, D.M., Coleman, R.L., Kundra, V. and Sood, A.K. Antitumor and antivascular effects of AVE8062 in ovarian carcinoma. Cancer Res. 67 (2007) 9337–9345. http://dx.doi.org/10.1158/0008-5472.CAN-06-401810.1158/0008-5472.CAN-06-4018Search in Google Scholar PubMed

[49] Pettit, G.R., Rosenberg, H.J., Dixon, R., Knight, J.C., Hamel, E., Chapuis, J.C., Pettit, R.K., Hogan, F., Sumner, B., Ain, K.B. and Trickey-Platt, B. Antineoplastic agents. 548. Synthesis of iodo- and diiodocombstatin phosphate prodrugs. J. Nat. Prod. 75 (2012) 385–393. http://dx.doi.org/10.1021/np200797x10.1021/np200797xSearch in Google Scholar PubMed PubMed Central

[50] Baur, J.A. and Sinclair, D.A. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov. 5 (2006) 493–506. http://dx.doi.org/10.1038/nrd206010.1038/nrd2060Search in Google Scholar PubMed

[51] Szekeres, T., Fritzer-Szekeres, M., Saiko, P. and Jaeger, W. Resveratrol and resveratrol analogues — structure-activity relationship. Pharm. Res. 27 (2010) 1042–1048. http://dx.doi.org/10.1007/s11095-010-0090-110.1007/s11095-010-0090-1Search in Google Scholar PubMed

[52] Schneider, Y., Chabert, P., Stutzmann, J., Coelho, D., Fougerousse, A., Gosse, F. Launay, J.-F., Brouillard, R. and Raul, F. Resveratrol analog (Z)-3,5,4′-trimethoxystilbene is a potent anti-mitotic drug inhibiting tubulin polymerization. Int. J. Cancer 107 (2003) 189–196. http://dx.doi.org/10.1002/ijc.1134410.1002/ijc.11344Search in Google Scholar PubMed

[53] Mazué, F., Colin, D., Gobbo, J., Wegner, M., Rescifina, A., Spatafora, C., Fasseur, D., Delmas, D., Meunier, P., Triangli, C. and Latruffe, N. Structural determinants of resveratrol for cell proliferation inhibition potency. Experimental and docking studies of new analogs. Eur. J. Med. Chem. 45 (2010) 2972–2980. http://dx.doi.org/10.1016/j.ejmech.2010.03.02410.1016/j.ejmech.2010.03.024Search in Google Scholar PubMed

[54] Sale, S., Verschoyle, R.D., Boockock, D., Jones, D.J.N., Wilsher, N., Potter, G.A., Farmer, P.B., Steward, W.P. and Gescher, A.J. Pharmacokinetics in mice and growth-inhibitory properties of the putative cancer chemopreventive agent resveratrol and the synthetic analogue trans-3,4,5,4′-tetramethoxystilbene. Br. J. Cancer 90 (2004) 736–744. http://dx.doi.org/10.1038/sj.bjc.660156810.1038/sj.bjc.6601568Search in Google Scholar PubMed PubMed Central

[55] Sale, S., Tunstall, R.G., Ruparelia, K.C., Potter, G.A., Steward, W.P. and Gescher, A.J. Comparison of the effects of the chemopreventive agent resveratrol and its synthetic analog trans-3,4,5,4′-tetramethoxystilbene (DMU-212) on adenoma development in the ApcMin+ mouse and cyclooxygenase-2 in human-derived colon cancer cells. Int. J. Cancer 115 (2005) 194–201. http://dx.doi.org/10.1002/ijc.2088410.1002/ijc.20884Search in Google Scholar PubMed

[56] Ma, Z., Molavi, O., Haddadi, A., Lai, R., Gossage, R.A. and Lavasanifar, A. Resveratrol analog trans 3,4,5,4′-tetramethoxystilbene (DMU-212) mediates antitumor effects via mechanism different from that of resveratrol. Cancer Chemother. Pharmacol. 63 (2008) 27–35. http://dx.doi.org/10.1007/s00280-008-0704-z10.1007/s00280-008-0704-zSearch in Google Scholar PubMed

[57] Park, H., Aiyar, S.E., Fan, P., Wang, J., Yue, W., Okouneva, T., Cox, C., Jordan, M.A., Demers, L., Cho, H., Kim, S., Song, R.X.-D. and Santen, R.J. Effects of tetramethoxystilbene on hormone-resistant breast cancer cells: biological and biochemical mechanisms of action. Cancer Res. 67 (2007) 5717–5726. http://dx.doi.org/10.1158/0008-5472.CAN-07-005610.1158/0008-5472.CAN-07-0056Search in Google Scholar PubMed

[58] Li, H., Wu, W.K.K., Li, Z.J., Chan, K.M., Wong, C.C.M., Ye, C.G., Yu, L., Sung, J.J.Y., Cho, C.H. and Wang, M. 2,3′,4,4′,5′-Pentamethoxy-transstilbene, a resveratrol derivative, inhibits colitis-associated colorectal carcinogenesis in mice. Br. J. Pharmacol. 160 (2010) 1352–1361. http://dx.doi.org/10.1111/j.1476-5381.2010.00785.x10.1111/j.1476-5381.2010.00785.xSearch in Google Scholar PubMed PubMed Central

[59] Hsieh, H.P., Liou, J.P. and Mahindroo, N. Pharmaceutical design of antimitotic agents on combretastatins. Curr. Pharm. Des. 11 (2005) 1655–1677. http://dx.doi.org/10.2174/138161205376475110.2174/1381612053764751Search in Google Scholar PubMed

[60] Hall, J.J., Sriram, M., Strecker, T.E., Tidmore, J.K., Jelinek, C.J., Kumar, G.D.K., Hadimani, M.B., Pettit, G.R., Chaplin, D.J., Trawick, M.L. and Pinney, K.G. Design, synthesis, biochemical, and biological evaluation of nitrogencontaining trifluoro structural modifications of combretastatin A-4. Bioorg. Med. Chem. Lett. 18 (2008) 5146–5149. http://dx.doi.org/10.1016/j.bmcl.2008.07.07010.1016/j.bmcl.2008.07.070Search in Google Scholar PubMed

[61] Dyrager, C., Wickström, M., Fridén-Saxin, M., Friberg, A., Dahlén, K., Wallén, E.A.A., Gullbo, J., Grøtli, M. and Luthman, K. Inhibitors and promoters of tubulin polymerization: synthesis and biological evaluation of chalcones and related dienones as potential anticancer agents. Bioorg. Med. Chem. 19 (2011) 2659–2665. http://dx.doi.org/10.1016/j.bmc.2011.03.00510.1016/j.bmc.2011.03.005Search in Google Scholar PubMed

[62] Cai, Y.-C., Zou, Y., Ye, Y.-L., Sun, H.-Y., Su, Q.-G., Wang, Z.-X., Zeng, Z.-L. and Xian L.-J. Anti-tumor activity and mechanisms of a novel vascular disrupting agent, (Z)-3,4′,5-trimethoxylstilbene-3′-O-phosphate disodium (M410). Invest. New Drugs 29 (2011) 300–311. http://dx.doi.org/10.1007/s10637-009-9366-x10.1007/s10637-009-9366-xSearch in Google Scholar

[63] Hatanaka, T., Fujita, K., Ohsumi, K., Nakagawa, R., Fukuda, Y., Nihei, Y., Suga, Y., Akiyama, Y. and Tsuji, T. Novel B-ring modified combretastatin analogues: syntheses and antineoplastic activity. Bioorg. Med. Chem. Lett. 8 (1998) 3371–3374. http://dx.doi.org/10.1016/S0960-894X(98)00622-210.1016/S0960-894X(98)00622-2Search in Google Scholar

[64] Cushman, M., Nagarathnam, D., Gopal, D., Chakraborti, A.K., Lin, C.M. and Hamel, E. Synthesis and evaluation of analogues of (Z)-l-(4-methoxyphenyl)-2-(3,4,5 trimethoxyphenyl)ethene as potential cytotoxic and anti-mitotic agents. J. Med. Chem. 35 (1992) 2293–2360. http://dx.doi.org/10.1021/jm00090a02110.1021/jm00090a021Search in Google Scholar

[65] Pinney, K.G., Meija, M.P., Villalobos, V.M., Rosenquist, B.E., Pettit, G.R., Verdier-Pinard, P. and Hamel, E. Synthesis and biological evaluation of aryl azide derivatives of combretastatin A-4 as molecular probes for tubulin. Bioorg. Med. Chem. 8 (2000) 2417–2425. http://dx.doi.org/10.1016/S0968-0896(00)00176-010.1016/S0968-0896(00)00176-0Search in Google Scholar

[66] Monk, K.A., Siles, R., Hadimani, M.B., Mugabe, B.E., Ackley, J.F., Studerus, S.W., Edvardsen, K., Trawick, M.L., Garner, C.M., Rhodes, M.R., Pettit, G.R. and Pinney, K.G. Design, synthesis, and biological evaluation of combretastatin nitrogen-containing derivatives as inhibitors of tubulin assembly and vascular disrupting agents. Bioorg. Med. Chem. 14 (2006) 3231–3244. http://dx.doi.org/10.1016/j.bmc.2005.12.03310.1016/j.bmc.2005.12.033Search in Google Scholar

[67] Wang, L., Woods, K.W., Li, Q., Barr, K.J., McCroskey, R.W., Hannick, S.M., Gherke, L., Credo, R.B., Hui, Y.H., Marsh, K, Warner, R., Lee, J.Y., Zielinski-Mozng, N., Frost, D., Rosenberg, S.H. and Sham, H.L. Potent, orally active heterocycle-based combretastatin A-4 analogues: synthesis, structure-activity relationship, pharmacokinetics, and in vivo antitumor activity evaluation. J. Med. Chem. 45 (2002) 1697–1711. http://dx.doi.org/10.1021/jm010523x10.1021/jm010523xSearch in Google Scholar

[68] Schobert, R., Biersack, B., Dietrich, A., Effenberger-Neidnicht, K., Knauer, S. and Mueller, T. 4-(3-Halo/amino-4,5-dimethoxyphenyl)-5-aryloxazoles and N-methylimidazoles that are cytotoxic against combretastatin A resistant tumor cells and vascular disrupting in a cisplatin resistant germ cell tumor model. J. Med. Chem. 53 (2010) 6595–6602. http://dx.doi.org/10.1021/jm100345r10.1021/jm100345rSearch in Google Scholar

[69] Bonezzi, K., Taraboletti, G., Borsotti, P., Bellina, F., Rossi, R. and Giavazzi, R. Vascular disrupting activity of tubulin-binding 1,5-diaryl-1H-imidazoles. J. Med. Chem. 52 (2009) 7906–7910. http://dx.doi.org/10.1021/jm900968s10.1021/jm900968sSearch in Google Scholar

[70] Ohsumi, K., Hatanaka, T., Fujita, K., Nakagawa, R., Fukuda, Y., Nihei, Y., Suga, Y., Morinaga, Y., Akiyama, Y. and Tsuji, T. Syntheses and antitumor activity of cis-restricted combretastatins: 5-membered heterocyclic analogues. Bioorg. Med. Chem. Lett. 8 (1998) 3153–3158. http://dx.doi.org/10.1016/S0960-894X(98)00579-410.1016/S0960-894X(98)00579-4Search in Google Scholar

[71] Romagnoli, R., Baraldi, P.G., Brancale, A., Ricci, A., Hamel, E., Bortolozzi, R., Basso, G. and Viola, G. Convergent synthesis and biological evaluation of 2-amino-4-(3′,4′,5′-trimethoxyphenyl)-5-aryl thiazoles as microtubule targeting agents. J. Med. Chem. 54 (2011) 5144–5153. http://dx.doi.org/10.1021/jm200392p10.1021/jm200392pSearch in Google Scholar PubMed PubMed Central

[72] Romagnoli, R., Baraldi, P.G., Salvador, M.K., Camacho, M.E., Preti, D., Tabrizi, M.A., Bassetto, M., Brancale, A., Hamel, E., Bortolozzi, R., Basso, G. and Viola, G. Synthesis and biological evaluation of 2-substituted-4-(3′,4′,5′-trimethoxyphenyl)-5-aryl thiazoles as anticancer agents. Bioorg. Med. Chem. 20 (2012) 7083–7094. http://dx.doi.org/10.1016/j.bmc.2012.10.00110.1016/j.bmc.2012.10.001Search in Google Scholar PubMed PubMed Central

[73] Tron, G.C., Pagliai, F., Sel Grosso, E., Genazzani, A.A. and Sorba, G. Synthesis and cytotoxic evaluation of combretafurazans. J. Med. Chem. 48 (2005) 3260–3258. http://dx.doi.org/10.1021/jm049096o10.1021/jm049096oSearch in Google Scholar PubMed

[74] Pirali, T., Busacca, S., Beltrami, L., Imovilli, D., Pagliali, F., Miglio, G., Massarotti, A., Verotta, L., Tron, G.C., Sorba, G. and Genazzani, A.A. Synthesis and cytotoxic evaluation of combretafurans, potential scaffolds for dual action of antitumoral agents. J. Med. Chem. 49 (2006) 5372–5376. http://dx.doi.org/10.1021/jm060621o10.1021/jm060621oSearch in Google Scholar PubMed

[75] Theeramunkong, S., Caldarelli, A., Massarotti, A., Aprile, S., Caprioglio, S., Zaninetti, R., Teruggi, A., Pirali, T., Grosa, G. and Tron, G.C. Regioselective Suzuki coupling of dihaloheteroaromatic compounds as a rapid strategy to synthesize potent rigid combretastatin analogues. J. Med. Chem. 54 (2011) 4977–4986. http://dx.doi.org/10.1021/jm200555r10.1021/jm200555rSearch in Google Scholar PubMed

[76] Zhang, W., Yang, Q., Wu, Y., Wu, L., Li, W., Qiao, F., Bao, K. and Zhang, L. Preparation of 2,3-diarylthiophene derivatives as antitumor agents. CN patent 101429189, 2009. Search in Google Scholar

[77] Qiao, F., Zuo, D., Shen, X., Qi, H., Wang, H., Zhang, W. and Wu, Y. DAT-230, a novel microtubule inhibitor, exhibits potent anti-tumor activity by inducing G2/M phase arrest, apoptosis in vitro and perfusion decrease in vivo to HT-1080. Cancer Chemother. Pharmacol. 70 (2012) 259–270. http://dx.doi.org/10.1007/s00280-012-1907-x10.1007/s00280-012-1907-xSearch in Google Scholar PubMed

[78] Liu, T., Dong, X., Xue, N., Wu, R., He, Q., Yang, B. and Hu, Y. Synthesis and biological evaluation of 3,4-biaryl-5-aminoisoxazole derivatives. Bioorg. Med. Chem. 17 (2009) 6279–6285. http://dx.doi.org/10.1016/j.bmc.2009.07.04010.1016/j.bmc.2009.07.040Search in Google Scholar PubMed

[79] Sun, C.-N., Lin, L.-G., Yu, H.-J., Cheng, C.-Y. and Tsai, Y.-C. Synthesis and cytotoxic activities of 4,5-diarylisoxazoles. Bioorg. Med. Chem. Lett. 17 (2007) 1078–1081. http://dx.doi.org/10.1016/j.bmcl.2006.11.02310.1016/j.bmcl.2006.11.023Search in Google Scholar PubMed

[80] Schobert, R., Effenberger-Neidnicht, K. and Biersack, B. Stable combretastatin A-4 analogues with sub-nanomolar efficacy against chemoresistant HT-29 cells. Int. J. Clin. Pharmacol. Ther. 49 (2011) 71–72. Search in Google Scholar

[81] Biersack, B., Effenberger, K., Schobert, R. and Ocker, M. Oxazole-bridged combretastatin A analogues with improved anticancer properties. ChemMedChem. 3 (2010) 420–427. http://dx.doi.org/10.1002/cmdc.20090047710.1002/cmdc.200900477Search in Google Scholar PubMed

[82] Akselsen, O.W., Odlo, K., Cheng, J-J., Maccari, G., Botta, M. and Hansen, T.V. Synthesis, biological evaluation and molecular modeling of 1,2,3-triazole analogs of combretastatin A-1. Bioorg. Med. Chem. 20 (2012) 234–242. http://dx.doi.org/10.1016/j.bmc.2011.11.01010.1016/j.bmc.2011.11.010Search in Google Scholar PubMed

[83] Romagnoli, R., Baraldi, P.G., Cruz-Lopez, O., Lopez-Cara, C., Carrion, M.D., Brancale, A., Hamel, E., Chen, L., Bortolozzi, R., Basso, G. and Viola, G. Synthesis and antitumor activity of 1,5-disubstituted 1,2,4-triazoles as cisrestricted combretastatin analogs. J. Med. Chem. 53 (2010) 4248–4258. http://dx.doi.org/10.1021/jm100245q10.1021/jm100245qSearch in Google Scholar PubMed PubMed Central

[84] Odlo, K., Hentzen, J., Fournier dit Chabert, J., Ducki, S., Gani, O.A.B.S.M., Sylte, I., Skrede, M., Flørenes, V.A. and Hansen, T.V. 1,5-disubstituted 1,2,3-triazoles as cis-restricted analogues of combretastatin A-4: synthesis, molecular modeling and evaluation as cytotoxic agents and inhibitors of tubulin. Bioorg. Med. Chem. 16 (2008) 4829–4838. http://dx.doi.org/10.1016/j.bmc.2008.03.04910.1016/j.bmc.2008.03.049Search in Google Scholar

[85] Odlo, K., Fournier-Dit-Chabert, J., Ducki, S., Gani, O.A.B.S.M., Sylte, I. and Hansen, T.V. 1,2,3-Triazole analogs of combretastatin A-4 as potential microtubule-binding agents. Bioorg. Med. Chem. 18 (2010) 6874–6885. http://dx.doi.org/10.1016/j.bmc.2010.07.03210.1016/j.bmc.2010.07.032Search in Google Scholar

[86] Romagnoli, R., Baraldi, P.G., Salvador, M.K., Preti, D., Tabrizi, M.D., Brancale, A., Fu, X.H., Li, J., Zhang, S.Z., Hamel, E., Bortolozzi, R., Basso, G. and Viola, G. Synthesis and evaluation of 1,5-disubstituted tetrazoles as rigid analogues of combretastatin A-4 with potent antiproliferative and antitumor activity. J. Med. Chem. 54 (2012) 475–488. http://dx.doi.org/10.1021/jm201397910.1021/jm2013979Search in Google Scholar

[87] Shirai, R., Takayama, H., Nishikawa, A., Koiso, Y. and Hashimoto, Y. Asymetric synthesis of anti-mitotic combretadioxolane with potent antitumor activity against multi-drug resistant cells. Bioorg. Med. Chem. Lett. 8 (1998) 1997–2000. http://dx.doi.org/10.1016/S0960-894X(98)00344-810.1016/S0960-894X(98)00344-8Search in Google Scholar

[88] Pettit, R.K., Pettit, G.R., Hamel, E., Hogan, F., Moser, B.R., Wolf, S., Pon, S., Chapuis, J-C. and Schmidt, J.M. E-combretastatin and E-resveratrol structural modifications: Antimicrobial and cancer cell growth inhibitory β-E-nitrostyrenes. Bioorg. Med. Chem. 17 (2009) 6606–6612. http://dx.doi.org/10.1016/j.bmc.2009.07.07610.1016/j.bmc.2009.07.076Search in Google Scholar PubMed

[89] Dark, G.G., Hill, S.A., Prise, V.E., Tozer, G.M., Pettit, G.R. and Chaplin, D.J. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res. 57 (1997) 1829–1834. Search in Google Scholar

[90] Hori, K., Saito, S., Nihei, Y., Suzuki, M. and Sato, Y. Antitumor effects due to irreversible stoppage of tumor tissue blood flow: evaluation of a novel combretastatin A-4 derivative, AC7700. Jpn. J. Cancer Res. 90 (1999) 1026–1038. http://dx.doi.org/10.1111/j.1349-7006.1999.tb00851.x10.1111/j.1349-7006.1999.tb00851.xSearch in Google Scholar PubMed PubMed Central

[91] Sheng, Y., Hua, J., Pinney, K.G., Garner, C.M., Kane, R.R., Prezioso, J.A., Chaplin, D.J and Edvardsen, K. Combretastatin family member OXI4503 induces tumor vascular collapse through the induction of endothelial apoptosis. Int. J. Cancer 111 (2004) 604–610. http://dx.doi.org/10.1002/ijc.2029710.1002/ijc.20297Search in Google Scholar PubMed

[92] Clémenson, C., Jouannot, E., Merino-Trigo, A., Rubin-Carrez, C. and Deutsch, E. The vascular disrupting agent ombrabulin (AVE8062) enhances the efficacy of standard therapies in head and neck squamous cell carcinoma xenograft models. Invest. New Drugs 31 (2013) 273–284. http://dx.doi.org/10.1007/s10637-012-9852-410.1007/s10637-012-9852-4Search in Google Scholar PubMed

[93] Rajak, H., Dewangan, P.K., Patel, V., Jain, D.K., Singh, A., Veerasamy, R., Sharma, P.C. and Dixit, A. Design of combretastatin A-4 analogs as tubulin targeted vascular disrupting agent with special emphasis on their cisrestricted isomers. Curr. Pharm. Des. 19 (2013) 1923–1955. http://dx.doi.org/10.2174/138161281131910001310.2174/1381612811319100013Search in Google Scholar PubMed

[94] Brakenhielm, E., Cao, R. and Cao, Y. Suppression of angiogenesis, tumor growth and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J. 15 (2001) 1798–1800. Search in Google Scholar

[95] Tseng, S.H., Lin, S.M., Chen, J.C., Su, Y.H., Huang, H.Y., Chen, C.K., Lin, P.Y. and Chen, Y. Resveratrol suppresses the angiogenesis and tumor growth of gliomas in rats. Clin. Cancer Res. 10 (2004) 2190–2202. http://dx.doi.org/10.1158/1078-0432.CCR-03-010510.1158/1078-0432.CCR-03-0105Search in Google Scholar PubMed

[96] Kundu, J.K. and Surh, Y.-J. Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Lett. 269 (2008) 243–261. http://dx.doi.org/10.1016/j.canlet.2008.03.05710.1016/j.canlet.2008.03.057Search in Google Scholar PubMed

[97] Belleri, M., Ribatti, D., Nicoli, S., Cotelli, F., Forti, L., Vannini, V., Stivala, L.A. and Presta, M. Antiangiogenic and vascular-targeting activity of the microtubule-destabilizing trans-resveratrol derivative 3,5,4′-trimethoxystilbene. Mol. Pharmacol. 67 (2005) 1451–1459. http://dx.doi.org/10.1124/mol.104.00904310.1124/mol.104.009043Search in Google Scholar PubMed

[98] Alex, D., Leon, E.C., Zhang, Z.-J., Yan, G.T.H., Cheng, S.H., Leong, C.-W., Li, Z.-H., Lam, K.-H., Chan, S.-W. and Lee, S.M.-Y. Resveratrol derivative, trans-3,5,4′-trimethoxystilbene, exerts antiangiogenic and vasculardisrupting effects in zebrafish through the downregulation of VEGFR2 and cell-cycle modulation. J. Cell. Biochem. 109 (2010) 339–346. Search in Google Scholar

[99] Folkes, L.K., Christlieb, M., Madej, E., Stratford, M.R.L. and Wardman, P. Oxidative metabolism of combretastatin A-1 produces quinone intermediates with the potential to bind to nucleophiles and to enhance oxidative stress via free radicals. Chem. Res. Toxicol. 20 (2007) 1885–1894. http://dx.doi.org/10.1021/tx700219510.1021/tx7002195Search in Google Scholar PubMed

[100] Rice, L., Pampo, C., Lepler, S., Rojiani, A.M. and Siemann, D.W. Support of a free radical mechanism for enhanced antitumor efficacy of the microtubule disruptor OXi4503. Microvasc. Res. 81 (2011) 44–51. http://dx.doi.org/10.1016/j.mvr.2010.10.00310.1016/j.mvr.2010.10.003Search in Google Scholar PubMed PubMed Central

[101] Madlambayan, G.J., Meacham, A.M., Hosaka, K., Mir, S., Jorgensen, M., Scott, E.W., Siemann, D.W. and Cogle, C.R. Leukemia regression by vascular disruption and anti-angiogenic therapy. Blood 116 (2010) 1539–1547. http://dx.doi.org/10.1182/blood-2009-06-23047410.1182/blood-2009-06-230474Search in Google Scholar PubMed PubMed Central

[102] Peláez, R., López, J.L. and Medarde, M. Application of chemoinformatic tools for the analysis of virtual screening studies of tubulin inhibitors. Advances in Soft Computing 44 (2007) 411–441. http://dx.doi.org/10.1007/978-3-540-74972-1_5310.1007/978-3-540-74972-1_53Search in Google Scholar

[103] Nguyen, T.L., McGrath, C., Hermone, A.R., Burnett, C.J., Zharevitz, D.W., Day, B.W., Wipf, P., Hamel, E. and Gussio, R. A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach. J. Med. Chem. 48 (2005) 6107–6116. http://dx.doi.org/10.1021/jm050502t10.1021/jm050502tSearch in Google Scholar PubMed

[104] Massarotti, A., Theeramunkong, S., Mesenzani, O., Caldarelli, A., Genazzani, A.A. and Tron, G.C. Identification of novel antitubulin agents by using a virtual screening approach based on 7-point pharmacophore model of the tubulin colchicine site. Chem. Biol. Drug Des. 78 (2011) 913–922. http://dx.doi.org/10.1111/j.1747-0285.2011.01245.x10.1111/j.1747-0285.2011.01245.xSearch in Google Scholar PubMed

[105] Kim, N.D., Park, E.-S., Kim, Y.H., Moon, S.K., Lee, S. S., Ahn, S.K., Yu, D.-Y., No, K.T. and Kim, K.-H. Structure-based virtual screening of novel tubulin inhibitors and their characterization as anti-mitotic agents. Bioorg. Med. Chem. 18 (2010) 7092–7100. http://dx.doi.org/10.1016/j.bmc.2010.07.07210.1016/j.bmc.2010.07.072Search in Google Scholar PubMed

[106] Massarotti, A., Coluccia, A., Silvestri, R., Sorba, G. and Brancale, A. The tubulin colchicine domain: a molecular modeling perspective. Chem. Med. Chem. 7 (2012) 33–42. 10.1002/cmdc.201100361Search in Google Scholar PubMed

[107] Romagnoli, R., Baraldi, P.G., Carrion, M.D., Cruz-Lopez, O., Cara, C.L., Tolomeo, M., Grimaudo, S., Di Cristina, A., Pipitone, M.R., Balzarini, J., Kandil, S., Brancale, A., Srkar, T. and Hamel, E. Synthesis and biological evaluation of 2-amino-3-(3′,4′,5′-trimethoxybenzoyl)-6-substituted-4,5,6,7-tetrahydrothieno[2,3-c]pyridine derivatives as anti-mitotic agents and inhibitors of tubulin polymerization. Bioorg. Med. Chem. Lett. 18 (2008) 5041–5045. http://dx.doi.org/10.1016/j.bmcl.2008.08.00610.1016/j.bmcl.2008.08.006Search in Google Scholar PubMed PubMed Central

[108] Ruan, B.-F., Lu, X., Tang, J.-F., Wei, Y., Wang, X.-L., Zhang, Y.-B., Wang, L.-S. and Zhu, H.-L. Synthesis, biological evaluation, and molecular docking studies of resveratrol derivatives possessing chalcone moiety as potential antitubulin agents. Bioorg. Med. Chem. 19 (2011) 2688–2695. http://dx.doi.org/10.1016/j.bmc.2011.03.00110.1016/j.bmc.2011.03.001Search in Google Scholar PubMed

[109] Kim, S., Min, S.Y., Lee, S.K., Cho, W.-J. Comparative molecular field analysis study of stilbene derivatives active against A549 lung carcinoma. Chem. Pharm. Bull. 51 (2003) 516–521. http://dx.doi.org/10.1248/cpb.51.51610.1248/cpb.51.516Search in Google Scholar PubMed

[110] Chiang, Y.K., Kuo, C.C., Wu, Y.S., Chen, C.T., Coumar, M.S., Wu, J.S., Hsieh, H.P., Chang, C.Y., Jseng, H.Y., Wu, M.H., Leou, J.S., Song, J.S., Chang, J.Y., Lyu, P.C., Chao, Y.S. and Wu, S.Y. Generation of ligandbased pharmacophore model and virtual screening for identification of tubulin inhibitors with potent anticancer activity. J. Med. Chem. 52 (2009) 4221–4233. http://dx.doi.org/10.1021/jm801649y10.1021/jm801649ySearch in Google Scholar PubMed

[111] Tseng, C.Y., Mane, J.Y., Winter, P., Johnson, L., Huzil, T., Izbicka, E., Luduena, R.F. and Tuszynski, J.A. Quantitative analysis of the effect of tubulin isotype expression on sensitivity of cancer cell lines to a set of novel colchicine derivatives. Mol. Cancer 30 (2010) 131–150. http://dx.doi.org/10.1186/1476-4598-9-13110.1186/1476-4598-9-131Search in Google Scholar PubMed PubMed Central

[112] Tuszynski, J.A., Craddock, T.J., Mane, J.Y., Barakat, K., Tseng, C.Y., Gajewski, M., Winter, P., Alisaraie, L., Patterson, J., Carpenter, E., Wang, W., Deyholos, M.K., Li, L., Sun, X., Zhang, Y. and Wong, G.K. Modeling the yew tree tubulin and a comparison of its interaction with Paclitaxel to human tubulin. Pharm. Res. 29 (2012) 3007–3021. http://dx.doi.org/10.1007/s11095-012-0829-y10.1007/s11095-012-0829-ySearch in Google Scholar PubMed

Published Online: 2013-7-27
Published in Print: 2013-9-1

© 2013 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-013-0094-z/html
Scroll to top button