Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter March 26, 2014

CD44 and CD24 cannot act as cancer stem cell markers in human lung adenocarcinoma cell line A549

  • Raheleh Roudi EMAIL logo , Zahra Madjd , Marzieh Ebrahimi , Fazel Samani and Ali Samadikuchaksaraei

Abstract

Cancer stem cells (CSCs) are subpopulations of tumor cells that are responsible for tumor initiation, maintenance and metastasis. Recent studies suggested that lung cancer arises from CSCs. In this study, the expression of potential CSC markers in cell line A549 was evaluated. We applied flow cytometry to assess the expression of putative stem cell markers, including aldehyde dehydrogenase 1 (ALDH1), CD24, CD44, CD133 and ABCG2. Cells were then sorted according to the expression of CD44 and CD24 markers by fluorescence-activated cell sorting (FACS) Aria II and characterized using their clonogenic and sphere-forming capacity. A549 cells expressed the CSC markers CD44 and CD24 at 68.16% and 54.46%, respectively. The expression of the putative CSC marker ALDH1 was 4.20%, whereas the expression of ABCG2 and CD133 was 0.93%. Double-positive CD44/133 populations were rare. CD44+/24+ and CD44+/CD24−/low subpopulations respectively exhibited 64% and 27.92% expression. The colony-forming potentials in the CD44+/CD24+ and CD44+/CD24−/low subpopulations were 84.37 ± 2.86% and 90 ± 3.06%, respectively, while the parental A549 cells yielded 56.65 ± 2.33% using the colony-formation assay. Both isolated subpopulations formed spheres in serumfree medium supplemented with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). CD44 and CD24 cannot be considered potential markers for isolating lung CSCs in cell line A549, but further investigation using in vivo assays is required.

[1] Travis, W.D. Pathology of lung cancer. Clin. Chest. Med. 32 (2011) 669–692. http://dx.doi.org/10.1016/j.ccm.2011.08.00510.1016/j.ccm.2011.08.005Search in Google Scholar PubMed

[2] Boman, B.M. and Wicha, M.S. Cancer stem cells: a step toward the cure. J. Clin. Oncol. 26 (2008) 2795–2799. http://dx.doi.org/10.1200/JCO.2008.17.743610.1200/JCO.2008.17.7436Search in Google Scholar PubMed

[3] Jordan, C.T., Guzman, M.L. and Noble, M. Cancer stem cells. N. Engl. J. Med. 355 (2006) 1253–1261. http://dx.doi.org/10.1056/NEJMra06180810.1056/NEJMra061808Search in Google Scholar PubMed

[4] Reya, T., Morrison, S.J., Clarke, M.F. and Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature 414 (2001) 105–111. http://dx.doi.org/10.1038/3510216710.1038/35102167Search in Google Scholar PubMed

[5] Rivera, C., Rivera, S., Loriot, Y., Vozenin, M.C. and Deutsch, E. Lung cancer stem cell: new insights on experimental models and preclinical data. J. Oncol. 2011 (2011) 549181. http://dx.doi.org/10.1155/2011/54918110.1155/2011/549181Search in Google Scholar PubMed PubMed Central

[6] Sun, S., Schiller, J.H., Spinola, M. and Minna, J.D. New molecularly targeted therapies for lung cancer. J. Clin. Invest. 117 (2007) 2740–2750. http://dx.doi.org/10.1172/JCI3180910.1172/JCI31809Search in Google Scholar PubMed PubMed Central

[7] Bertolini, G., Roz, L., Perego, P., Tortoreto, M., Fontanella, E., Gatti, L., Pratesi, G., Fabbri, A., Andriani, F., Tinelli, S., Roz, E., Caserini, R., Lo Vullo, S., Camerini, T., Mariani, L., Delia, D., Calabrò, E., Pastorino, U. and Sozzi, G. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc. Natl. Acad. Sci. USA 106 (2009)16281–16286. http://dx.doi.org/10.1073/pnas.090565310610.1073/pnas.0905653106Search in Google Scholar PubMed PubMed Central

[8] Eramo, A., Lotti, F., Sette, G., Pilozzi, E., Biffoni, M., Di Virgilio, A., Conticello, C., Ruco, L., Peschle, C. and De Maria, R. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 15 (2007) 504–514. http://dx.doi.org/10.1038/sj.cdd.440228310.1038/sj.cdd.4402283Search in Google Scholar PubMed

[9] Piechaczek, C. CD133. J. Biol. Regul. Homeost. Agents 15 (2001) 101–102. Search in Google Scholar

[10] Chen, Y.C., Hsu, H.S., Chen, Y.W., Tsai, T.H., How, C.K., Wang, C.Y., Hung, S.C., Chang, Y.L., Tsai, M.L., Lee, Y.Y., Ku, H.H. and Chiou, S.H. Oct-4 expression maintained cancer stem-like properties in lung cancerderived CD133-positive cells. PLoS One 3 (2008) e2637. http://dx.doi.org/10.1371/journal.pone.000263710.1371/journal.pone.0002637Search in Google Scholar PubMed PubMed Central

[11] Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J. and Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100 (2003) 3983–3988. http://dx.doi.org/10.1073/pnas.053029110010.1073/pnas.0530291100Search in Google Scholar PubMed PubMed Central

[12] Leung, E.L., Fiscus, R.R., Tung, J.W., Tin, V.P., Cheng, L.C., Sihoe, A.D., Fink, L.M., Ma, Y. and Wong, M.P. Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One 5 (2010) e14062. http://dx.doi.org/10.1371/journal.pone.001406210.1371/journal.pone.0014062Search in Google Scholar PubMed PubMed Central

[13] Naor, D., Wallach-Dayan, S.B., Zahalka, M.A. and Sionov, R.V. Involvement of CD44, a molecule with a thousand faces, in cancer dissemination. Semin. Cancer Biol. 18 (2008) 260–267. http://dx.doi.org/10.1016/j.semcancer.2008.03.01510.1016/j.semcancer.2008.03.015Search in Google Scholar PubMed

[14] Hurt, E.M., Kawasaki, B.T., Klarmann, G.J., Thomas, S.B. and Farrar, W.L. CD44+ CD24 — prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br. J. Cancer 98 (2008) 756–765. http://dx.doi.org/10.1038/sj.bjc.660424210.1038/sj.bjc.6604242Search in Google Scholar PubMed PubMed Central

[15] Yeung, T.M., Gandhi, S.C., Wilding, J.L., Muschel, R. and Bodmer, W.F. Cancer stem cells from colorectal cancer-derived cell lines Proc. Natl. Acad. Sci. USA 107 (2010) 3722–3727. http://dx.doi.org/10.1073/pnas.091513510710.1073/pnas.0915135107Search in Google Scholar PubMed PubMed Central

[16] Yoshida, A., Hsu, L. and Dave, V. Retinal oxidation activity and biological role of human cytosolic aldehyde dehydrogenase. Enzyme 46 (1992) 239–244. Search in Google Scholar

[17] Jiang, F., Qiu, Q., Khanna, A., Todd, N.W., Deepak, J., Xing, L., Wang, H., Liu, Z., Su, Y., Stass, S.A. and Ktz, R.L. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol. Cancer Res. 7 (2009) 330–338. http://dx.doi.org/10.1158/1541-7786.MCR-08-039310.1158/1541-7786.MCR-08-0393Search in Google Scholar PubMed PubMed Central

[18] Ucar, D., Cogle, C.R., Zucali, J.R., Ostmark, B., Scott, E.W., Zori, R., Gray, B.A. and Moreb, J.S. Aldehyde dehydrogenase activity as a functional marker for lung cancer. Chem. Biol. Interact 178 (2009) 48–55. http://dx.doi.org/10.1016/j.cbi.2008.09.02910.1016/j.cbi.2008.09.029Search in Google Scholar PubMed PubMed Central

[19] Ding, X.W., Wu, J.H. and Jiang, C.P. ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci. 86 (2010) 631–637. http://dx.doi.org/10.1016/j.lfs.2010.02.01210.1016/j.lfs.2010.02.012Search in Google Scholar PubMed

[20] Ho, M.M., Ng, A.V., Lam, S. and Hung, J.Y. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 67 (2007) 4827–4833. http://dx.doi.org/10.1158/0008-5472.CAN-06-355710.1158/0008-5472.CAN-06-3557Search in Google Scholar PubMed

[21] Charloux, A., Quoix, E., Wolkove, N., Small, D., Pauli, G. and Kreisman, H. The increasing incidence of lung adenocarcinoma: reality or artefact? A review of the epidemiology of lung adenocarcinoma. Int. J. Epidemiol. 26 (1997) 14–23. http://dx.doi.org/10.1093/ije/26.1.1410.1093/ije/26.1.14Search in Google Scholar PubMed

[22] Sung, J.M., Cho, H.J., Yi, H., Lee, C.H., Kim, H.S., Kim, D.K., Abd El-Aty, A.M., Kim, J.S., Landowski, C.P., Hediger, M.A. and Chin, H.C. Characterization of a stem cell population in lung cancer A549 cells. Biochem. Biophys. Res. Commun. 371 (2008) 163–167. http://dx.doi.org/10.1016/j.bbrc.2008.04.03810.1016/j.bbrc.2008.04.038Search in Google Scholar PubMed

[23] Barrandon, Y. and Green, H. Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl. Acad. Sci. USA 84 (1987) 2302–2306. http://dx.doi.org/10.1073/pnas.84.8.230210.1073/pnas.84.8.2302Search in Google Scholar PubMed PubMed Central

[24] Li, H., Chen, X., Calhoun-Davis, T., Claypool, K. and Tang, D.G. PC3 human prostate carcinoma cell holoclones contain self-renewing tumorinitiating cells. Cancer Res. 68 (2008) 1820–1825. http://dx.doi.org/10.1158/0008-5472.CAN-07-587810.1158/0008-5472.CAN-07-5878Search in Google Scholar PubMed

[25] Zhou, Z.H., Ping, Y.F., Yu, S.C., Yi, L., Yao, X.H., Chen, J.H., Cui, Y.H. and Bian, X-W. A novel approach to the identification and enrichment of cancer stem cells from a cultured human glioma cell line. Cancer Lett. 281 (2009) 92–99. http://dx.doi.org/10.1016/j.canlet.2009.02.03310.1016/j.canlet.2009.02.033Search in Google Scholar PubMed

[26] Tan, L., Sui, X., Deng, H. and Ding, M. Holoclone forming cells from pancreatic cancer cells enrich tumor initiating cells and represent a novel model for study of cancer stem cells. PLoS One 6 (2011) e23383. http://dx.doi.org/10.1371/journal.pone.002338310.1371/journal.pone.0023383Search in Google Scholar PubMed PubMed Central

[27] Franken, N.A., Rodermond, H.M., Stap, J., Haveman, J. and Van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 1 (2006) 2315–2319. http://dx.doi.org/10.1038/nprot.2006.33910.1038/nprot.2006.339Search in Google Scholar PubMed

[28] Pastrana, E., Silva-Vargas, V. and Doetsch, F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8 (2011) 486–498. http://dx.doi.org/10.1016/j.stem.2011.04.00710.1016/j.stem.2011.04.007Search in Google Scholar PubMed PubMed Central

[29] Friedrich, J., Seidel, C., Ebner, R. and Kunz-Schughart, L.A. Spheroid-based drug screen: considerations and practical approach. Nat. Protoc. 4 (2009) 309–324. http://dx.doi.org/10.1038/nprot.2008.22610.1038/nprot.2008.226Search in Google Scholar PubMed

[30] Hill, R.P. Identifying cancer stem cells in solid tumors: case not proven. Cancer Res. 66 (2006) 1891–1895. http://dx.doi.org/10.1158/0008-5472.CAN-05-345010.1158/0008-5472.CAN-05-3450Search in Google Scholar PubMed

[31] Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D. and Dirks, P.B. Identification of human brain tumour initiating cells. Nature 432 (2004) 396–401. http://dx.doi.org/10.1038/nature0312810.1038/nature03128Search in Google Scholar PubMed

[32] Meng, X., Li, M., Wang, X., Wang, Y. and Ma, D. Both CD133+ and CD133 — subpopulations of A549 and H446 cells contain cancer-initiating cells. Cancer Sci. 100 (2009) 1040–1046. http://dx.doi.org/10.1111/j.1349-7006.2009.01144.x10.1111/j.1349-7006.2009.01144.xSearch in Google Scholar PubMed

[33] Akunuru, S, Zhai, Q.J. and Zheng, Y. Non-small cell lung cancer stem/progenitor cells are enriched in multiple distinct phenotypic subpopulations and exhibit plasticity. Cell Death Dis. 3 (2012) e352. http://dx.doi.org/10.1038/cddis.2012.9310.1038/cddis.2012.93Search in Google Scholar PubMed PubMed Central

[34] Stuelten, C.H., Mertins, S.D., Busch, J.I., Gowens, M., Scudiero, D.A., Burkett, M.W., Hite, K.M., Alley, M., Hollingshead, M., Shoemaker, R.H. and Niederhuber, J.E. Complex display of putative tumor stem cell markers in the NCI60 tumor cell line panel. Stem Cells 28 (2010) 649–660. http://dx.doi.org/10.1002/stem.32410.1002/stem.324Search in Google Scholar PubMed PubMed Central

[35] Levina, V., Marrangoni, A.M., DeMarco, R., Gorelik, E. and Lokshin, A.E. Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS One 3 (2008) e3077. http://dx.doi.org/10.1371/journal.pone.000307710.1371/journal.pone.0003077Search in Google Scholar PubMed PubMed Central

[36] Tirino, V., Camerlingo, R., Franco, R., Malanga, D., La Rocca, A., Viglietto, G., Rocco, G. and Pirozzi, G. The role of CD133 in the identification and characterisation of tumour-initiating cells in non-smallcell lung cancer. Eur. J. Cardiothorac. Surg. 36 (2009) 446–453. http://dx.doi.org/10.1016/j.ejcts.2009.03.06310.1016/j.ejcts.2009.03.063Search in Google Scholar PubMed

[37] Fargeas, C., Huttner, W. and Corbeil, D. Nomenclature of prominin-1 (CD133) splice variants-an update. Tissue Antigens 69 (2007) 602–606. http://dx.doi.org/10.1111/j.1399-0039.2007.00825.x10.1111/j.1399-0039.2007.00825.xSearch in Google Scholar PubMed

[38] Shmelkov, S.V., St Clair, R., Lyden, D. and Rafii, S. AC133/CD133/Prominin-1. Int. J. Biochem. Cell Biol. 37 (2005) 715–719. http://dx.doi.org/10.1016/j.biocel.2004.08.01010.1016/j.biocel.2004.08.010Search in Google Scholar PubMed

[39] Wang, P., Gao, Q., Suo, Z., Munthe, E., Solberg, S., Ma, L., Wang, M., Westerdaal, N.A., Kvalheim, G. and Gaudernack, G. Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines. PLoS One 8 (2013) e57020. http://dx.doi.org/10.1371/journal.pone.005702010.1371/journal.pone.0057020Search in Google Scholar PubMed PubMed Central

[40] Kim, J., Jung, J., Lee S.J., Lee J.S. and Park M.J. Cancer stem-like cells persist in established cell lines through autocrine activation of EGFR signaling. Oncol. Lett. 3 (2012) 607–612. Search in Google Scholar

[41] Kelly, J.J., Stechishin, O., Chojnacki, A., Lun, X., Sun, B., Senger, D.L., Forsyth, P., Auer, R.N., Dunn, J.F., Cairncross, J.G., Parney I.F., and Weiss, S. Proliferation of human glioblastoma stem cells occurs independently of exogenous mitogens. Stem Cells 27 (2009) 1722–1733. http://dx.doi.org/10.1002/stem.9810.1002/stem.98Search in Google Scholar PubMed

[42] Li, G., Chen, Z., Hu, Y.D., Wei, H., Li, D., Ji, H. and Wang, D-L. Autocrine factors sustain glioblastoma stem cell self-renewal. Oncol. Rep. 21 (2009) 419–424. Search in Google Scholar

Published Online: 2014-3-26
Published in Print: 2014-3-1

© 2013 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-013-0112-1/html
Scroll to top button