Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter September 12, 2014

miR-375 induces human decidua basalis-derived stromal cells to become insulin-producing cells

  • Anahita Shaer EMAIL logo , Negar Azarpira , Akbar Vahdati , Mohammad Karimi and Mehrdad Shariati

Abstract

This paper focuses on the development of renewable sources of isletreplacement tissue for the treatment of type I diabetes mellitus. Placental tissue-derived mesenchymal stem cells (MSCs) are a promising source for regenerative medicine due to their plasticity and easy availability. They have the potential to differentiate into insulin-producing cells. miR-375 is a micro RNA that is expressed in the pancreas and involved in islet development. Human placental decidua basalis MSCs (PDB-MSCs) were cultured from full-term human placenta. The immunophenotype of the isolated cells was checked for CD90, CD105, CD44, CD133 and CD34 markers. The MSCs (P3) were chemically transfected with hsa-miR-375. Total RNA was extracted 4 and 6 days after transfection. The expressions of insulin, NGN3, GLUT2, PAX4, PAX6, KIR6.2, NKX6.1, PDX1, and glucagon genes were evaluated using real-time qPCR. On day 6, we tested the potency of the clusters in response to the high glucose challenge and assessed the presence of insulin and NGN3 proteins via immunocytochemistry. Flow cytometry analysis confirmed that more than 90% of the cells were positive for CD90, CD105 and CD44 and negative for CD133 and CD34. Morphological changes were followed from day 2. Cell clusters formed during day 6. Insulin-producing clusters showed a deep red color with DTZ. The expression of pancreatic-specific transcription factors increased remarkably during the four days after transfection and significantly increased on day 7. The clusters were positive for insulin and NGN3 proteins, and C-peptide and insulin secretion increased in response to changes in the glucose concentration (2.8 mM and 16.7 mM). In conclusion, the MSCs could be programmed into functional insulin-producing cells by transfection of miR-375.

[1] Cabrera, O., Berman, D.M., Kenyon, N.S., Ricordi, C., Berggren, P.O. and Caicedo, A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. USA 103 (2006) 2334–2339. http://dx.doi.org/10.1073/pnas.051079010310.1073/pnas.0510790103Search in Google Scholar

[2] Yesil, P. and Lammert, E. Islet dynamics: a glimpse at beta cell proliferation. Histol. Histopathol. 23 (2008) 883–895. Search in Google Scholar

[3] Warnock, G.L., Kneteman, N.M., Ryan, E.A., Evans, M.G., Seelis, R.E., Halloran, P.F., Rabinovitch, A. and Rajotte, R.V. Continued function of pancreatic islets after transplantation in type I diabetes. Lancet 2 (1989) 570–572. http://dx.doi.org/10.1016/S0140-6736(89)90701-010.1016/S0140-6736(89)90701-0Search in Google Scholar

[4] Warnock, G.L., Liao, Y.H., Wang, X., Ou, D., Ao, Z., Johnson, J.D., Verchere, C.B. and Thompson, D. An odyssey of islet transplantation for therapy of type 1 diabetes. World J. Surg. 31 (2007) 1569–1576. http://dx.doi.org/10.1007/s00268-007-9125-010.1007/s00268-007-9125-0Search in Google Scholar PubMed

[5] Thompson, D.M., Meloche, M., Ao, Z., Paty, B., Keown, P., Shapiro, R.J., Ho, S., Worsley, D., Fung, M., Meneilly, G., Begg, I.Al., Mehthel, M., Kondi, J., Harris, C., Fensom, B., Kozak, S.E., Tong, S.O., Trinh, M. and Warnock, G.L. Reduced progression of diabetic microvascular complications with islet cell transplantation compared with intensive medical therapy. Transplantation 91 (2011) 373–378. http://dx.doi.org/10.1097/TP.0b013e31820437f310.1097/TP.0b013e31820437f3Search in Google Scholar PubMed

[6] Fung, M.A., Warnock, G.L., Ao, Z., Keown, P., Meloche, M., Shapiro, R.J., Ho, S., Worsley, D., Meneilly, G.S., Ghofaili, K., Kozak, S.E., Tong, S.O., Trinh, M., Blackburn, L., Kozak, R.M., Fensom, B.A. and Thompson, D.M. The effect of medical therapy and islet cell transplantation on diabetic nephropathy: an interim report. Transplantation 84 (2007) 17–22. http://dx.doi.org/10.1097/01.tp.0000265502.92321.ab10.1097/01.tp.0000265502.92321.abSearch in Google Scholar PubMed

[7] Thompson, D.M., Begg, I.S., Harris, C., Ao, Z., Fung, M.A., Meloche, R.M., Keown, P., Meneilly, G.S., Shapiro, R.J., Ho, S., Dawson, K.G., Al, Ghofaili, K.A.l., Riyami, L., Al, Mehthel, M., Kozak, S.E., Tong, S.O. and Warnock, G.L. Reduced progression of diabetic retinopathy after islet cell transplantation compared with intensive medical therapy. Transplantation 85 (2008) 1400–1405. http://dx.doi.org/10.1097/TP.0b013e318172ca0710.1097/TP.0b013e318172ca07Search in Google Scholar PubMed

[8] Warnock, G.L., Meloche, R.M., Thompson, D., Shapiro, R.J., Fung, M., Ao, Z., Ho, S., He, Z., Dai, L.J., Young, L., Blackburn, L., Kozak, S., Kim, P.T., Al-Adra D., Johnson, J.D., Liao, Y.H., Elliott, T. and Verchere, C.B. Improved human pancreatic islet isolation for a prospective cohort study of islet transplantation vs best medical therapy in type 1 diabetes mellitus. Arch. Surg. 140 (2005) 735–744. http://dx.doi.org/10.1001/archsurg.140.8.73510.1001/archsurg.140.8.735Search in Google Scholar PubMed

[9] Shapiro, A.M., Lakey, J.R., Ryan, E.A., Korbutt, G.S., Toth, E., Warnock, G.L., Kneteman, N.M. and Rajotte, R.V. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343 (2000) 230–238. http://dx.doi.org/10.1056/NEJM20000727343040110.1056/NEJM200007273430401Search in Google Scholar PubMed

[10] Johnson, J.D., Ao, Z., Ao, P., Li, H., Dai, L.J., He, Z., Tee, M., Potter, K.J., Klimek, A.M., Meloche, R.M., Thompson, D.M., Verchere, C.B. and Warnock, G.L. Different effects of FK506, rapamycin, and mycophenolate mofetil on glucose-stimulated insulin release and apoptosis in human islets. Cell Transplant. 18 (2009) 833–845. http://dx.doi.org/10.3727/096368909X47119810.3727/096368909X471198Search in Google Scholar PubMed

[11] Marappagounder, D., Somasundaram, I., Dorairaj, S. and Sankaran, R.J. Differentiation of mesenchymal stem cells derived from human bone marrow and subcutaneous adipose tissue into pancreatic islet-like clusters in vitro. Cell. Mol. Biol. Lett. 18 (2013) 75–88. http://dx.doi.org/10.2478/s11658-012-0040-510.2478/s11658-012-0040-5Search in Google Scholar PubMed PubMed Central

[12] Harasymiak-Krzyżanowska, I., Niedojadło, A., Karwat, J., Kotuła, L., Gil-Kulik, P., Sawiuk, M. and Kocki, J. Adipose tissue-derived stem cells show considerable promise for regenerative medicine applications. Cell. Mol. Biol. Lett. 18 (2013) 479–493. http://dx.doi.org/10.2478/s11658-013-0101-410.2478/s11658-013-0101-4Search in Google Scholar

[13] Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S. and Johnson, J.M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433 (2005) 769–773. http://dx.doi.org/10.1038/nature0331510.1038/nature03315Search in Google Scholar

[14] Bartel, D.P. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell 116 (2004) 281–297. http://dx.doi.org/10.1016/S0092-8674(04)00045-510.1016/S0092-8674(04)00045-5Search in Google Scholar

[15] Stefani, G. and Slack, F.J. Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell Biol. 9 (2008) 219–230. http://dx.doi.org/10.1038/nrm234710.1038/nrm2347Search in Google Scholar

[16] Ambros, V. microRNAs: tiny regulators with great potential. Cell 107 (2001) 823–826. http://dx.doi.org/10.1016/S0092-8674(01)00616-X10.1016/S0092-8674(01)00616-XSearch in Google Scholar

[17] Smallridge, R. A small fortune. Nat. Rev. Mol. Cell Biol. 2 (2001) 867. http://dx.doi.org/10.1038/3510303610.1038/35103036Search in Google Scholar PubMed

[18] Kloosterman, W.P., Lagendijk, A.K., Ketting, R.F., Moulton, J.D. and Plasterk, R.H. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol. 5 (2007) e203. http://dx.doi.org/10.1371/journal.pbio.005020310.1371/journal.pbio.0050203Search in Google Scholar PubMed PubMed Central

[19] Baroukh, N., Ravier, M.A., Loder, M.K., Hill, E.V., Bounacer, A., Scharfmann, R., Rutter, G.A. and Van, Obberghen, E. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J. Biol. Chem. 282 (2007) 19575–19588. http://dx.doi.org/10.1074/jbc.M61184120010.1074/jbc.M611841200Search in Google Scholar PubMed

[20] Poy, M.N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X., Macdonald, P.E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P. and Stoffel, M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432 (2004) 226–230. http://dx.doi.org/10.1038/nature0307610.1038/nature03076Search in Google Scholar PubMed

[21] Gauthier, B.R. and Wollheim, C.B. MicroRNAs: ribo-regulators’ of glucose homeostasis. Nat. Med. 12 (2006) 36–38. http://dx.doi.org/10.1038/nm0106-3610.1038/nm0106-36Search in Google Scholar PubMed

[22] Cuellar, T.L. and McManus, M.T. MicroRNAs and endocrine biology. J. Endocrinol. 187 (2005) 327–332. http://dx.doi.org/10.1677/joe.1.0642610.1677/joe.1.06426Search in Google Scholar PubMed

[23] Xiao, J., Luo, X., Lin, H., Zhang, Y., Lu, Y., Wang, N., Zhang, Y., Yang, B. and Wang, Z. MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J. Biol. Chem. 282 (2007) 12363–12367. http://dx.doi.org/10.1074/jbc.C70001520010.1074/jbc.C700015200Search in Google Scholar PubMed

[24] Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Rossi, J.J. and Natarajan, R. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc. Natl. Acad. Sci. USA 104 (2007) 3432–3437. http://dx.doi.org/10.1073/pnas.061119210410.1073/pnas.0611192104Search in Google Scholar PubMed PubMed Central

[25] Tang, X., Tang, G. and Ozcan, S. Role of microRNAs in diabetes. Biochim. Biophys. Acta 1779 (2008) 697–701. http://dx.doi.org/10.1016/j.bbagrm.2008.06.01010.1016/j.bbagrm.2008.06.010Search in Google Scholar PubMed PubMed Central

[26] Keller, D.M., McWeeney, S., Arsenlis, A., Drouin, J., Wright, C.V., Wang, H., Wollheim, C.B., White, P., Kaestner, K.H. and Goodman, R.H. Characterization of pancreatic transcription factor Pdx-1 binding sites using promoter microarray and serial analysis of chromatin occupancy. J. Biol. Chem. 282 (2007) 32084–32092. http://dx.doi.org/10.1074/jbc.M70089920010.1074/jbc.M700899200Search in Google Scholar PubMed

[27] Yu, X.X., Shi, Y.A., Xin, Y., Zhang, L.H., Li, Y.L. and Wu, S. Biologic characteristics of rat bone marrow mesenchymal stem cells cultured in vitro. Zhonghua Bing Li Xue Za Zhi 36 (2007) 550–554. Search in Google Scholar

[28] Marcus, A.J., Coyne, T.M., Rauch, J., Woodbury, D. and Black, I.B. Isolation, characterization, and differentiation of stem cells derived from the rat amniotic membrane. Differentiation 76 (2008) 130–144. http://dx.doi.org/10.1111/j.1432-0436.2007.00194.x10.1111/j.1432-0436.2007.00194.xSearch in Google Scholar PubMed

[29] Latif, Z.A., Noel, J. and Alejandro, R.A. Simple method of staining fresh and cultured islets. Transplantation 45 (1988) 827–830. http://dx.doi.org/10.1097/00007890-198804000-0003810.1097/00007890-198804000-00038Search in Google Scholar

[30] Wei, R., Yang, J., Liu, G.Q., Gao, M.J., Hou, W.F., Zhang, L., Gao, H.W., Liu, Y., Chen, G.A. and Hong, T.P. Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulinproducing cells. Gene 518 (2013) 246–255. http://dx.doi.org/10.1016/j.gene.2013.01.03810.1016/j.gene.2013.01.038Search in Google Scholar PubMed

[31] Le, Blanc, K., Samuelsson, H., Gustafsson, B., Remberger, M., Sundberg, B., Arvidson, J., Ljungman, P., Lönnies, H., Nava, S. and Ringdén, O. Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia 21 (2008) 1733–1738. http://dx.doi.org/10.1038/sj.leu.240477710.1038/sj.leu.2404777Search in Google Scholar PubMed

[32] Macmillan, M.L., Blazar, B.R., DeFor, T.E. and Wagner, J.E. Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplant. 43 (2009) 447–454. http://dx.doi.org/10.1038/bmt.2008.34810.1038/bmt.2008.348Search in Google Scholar PubMed

[33] Zanini, C., Bruno, S., Mandili, G., Baci, D., Cerutti, F., Cenacchi, G., Izzi, L., Camussi, G. and Forni, M. Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype. PLoS One 6 (2011) 28175. http://dx.doi.org/10.1371/journal.pone.002817510.1371/journal.pone.0028175Search in Google Scholar PubMed PubMed Central

[34] Moshtagh, P.R., Emami, S.H. and Sharifi, A.M. Differentiation of human adipose-derived mesenchymal stem cell into insulin-producing cells: an in vitro study. J. Physiol. Biochem. 69 (2013) 451–458. http://dx.doi.org/10.1007/s13105-012-0228-110.1007/s13105-012-0228-1Search in Google Scholar PubMed

[35] Kadam, S., Muthyala, S., Nair, P. and Bhonde, R. Human placenta-derived mesenchymal stem cells and islet-like cell clusters generated from these cells as a novel source for stem cell therapy in diabetes. Rev. Diabet. Stud. 7 (2012) 168–182. http://dx.doi.org/10.1900/RDS.2010.7.16810.1900/RDS.2010.7.168Search in Google Scholar PubMed PubMed Central

[36] Talebi, S., Aleyasin, A., Soleimani, M. and Massumi, M. Derivation of islet-like cells from mesenchymal stem cells using PDX1-transducing lentiviruses. Biotechnol. Appl. Biochem. 59 (2012) 205–212. http://dx.doi.org/10.1002/bab.101310.1002/bab.1013Search in Google Scholar PubMed

[37] Ivey, K.N. and Srivastava, D. MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell. 7 (2010) 36–41. http://dx.doi.org/10.1016/j.stem.2010.06.01210.1016/j.stem.2010.06.012Search in Google Scholar PubMed

[38] Yi, R. and Fuchs, E. MicroRNAs and their roles in mammalian stem cells. J. Cell Sci. 124 (2011) 1775–1783. http://dx.doi.org/10.1242/jcs.06910410.1242/jcs.069104Search in Google Scholar PubMed PubMed Central

[39] Bravo-Egana, V., Rosero, S., Molano, R.D., Pileggi, A., Ricordi, C., Domínguez-Bendala, J. and Pastori, R.L. Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochem. Biophys. Res. Commun. 366 (2008) 922–926. http://dx.doi.org/10.1016/j.bbrc.2007.12.05210.1016/j.bbrc.2007.12.052Search in Google Scholar PubMed PubMed Central

[40] Lynn, F.C., Skewes-Cox, P., Kosaka, Y., McManus, M.T., Harfe, B.D. and German, M.S. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56 (2007) 2938–2945. http://dx.doi.org/10.2337/db07-017510.2337/db07-0175Search in Google Scholar PubMed

[41] Poy, M.N., Hausser, J., Trajkovski, M., Braun, M., Collins, S., Rorsman, P., Zavolan, M. and Stoffel, M. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc. Natl. Acad. Sci. USA 106 (2009) 5813–5818. http://dx.doi.org/10.1073/pnas.081055010610.1073/pnas.0810550106Search in Google Scholar PubMed PubMed Central

[42] Joglekar, M.V., Joglekar, V.M. and Hardikar, A.A. Expression of islet-specific microRNAs during human pancreatic development. Gene Expr. Patterns 9 (2009) 109–113. http://dx.doi.org/10.1016/j.gep.2008.10.00110.1016/j.gep.2008.10.001Search in Google Scholar PubMed

[43] Correa-Medina, M., Bravo-Egana, V., Rosero, S., Ricordi, C., Edlund, H., Diez, J. and Pastori, R. L. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr. Patterns 9 (2009) 193–199. http://dx.doi.org/10.1016/j.gep.2008.12.00310.1016/j.gep.2008.12.003Search in Google Scholar PubMed

[44] Murtaugh, L.C. Pancreas and beta-cell development: from the actual to the possible. Development 134 (2007) 427–438. http://dx.doi.org/10.1242/dev.0277010.1242/dev.02770Search in Google Scholar PubMed

[45] Oliver-Krasinski, J.M. and Stoffers, D.A. On the origin of the β cell. Genes Dev. 22 (2008) 1998–2021. http://dx.doi.org/10.1101/gad.167080810.1101/gad.1670808Search in Google Scholar PubMed PubMed Central

Published Online: 2014-9-12
Published in Print: 2014-9-1

© 2013 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-014-0207-3/html
Scroll to top button