Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter December 21, 2014

Regulation of lncRNA expression

  • Zhuomin Wu EMAIL logo , Xiaoxia Liu , Li Liu , Houliang Deng , Jingjing Zhang , Qian Xu , Bohong Cen and Aimin Ji

Abstract

Long non-coding RNAs (lncRNAs) are series of transcripts with important biological functions. Various diseases have been associated with aberrant expression of lncRNAs and the related dysregulation of mRNAs. In this review, we highlight the mechanisms of dynamic lncRNA expression. The chromatin state contributes to the low and specific expression of lncRNAs. The transcription of non-coding RNA genes is regulated by many core transcription factors applied to protein-coding genes. However, specific DNA sequences may allow their unsynchronized transcription with their location-associated mRNAs. Additionally, there are multiple mechanisms involved in the post-transcriptional regulation of lncRNAs. Among these, microRNAs might have indispensible regulatory effects on lncRNAs, based on recent discoveries.

[1] Yang, F., Zhang, L., Huo, X.S., Yuan, J.H., Xu, D., Yuan, S.X., Zhu, N., Zhou, W.P., Yang, G.S., Wang, Y.Z., Shang, J.L., Gao, C.F., Zhang, F.R., Wang, F. and Sun, S.H. Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology 54 (2011) 1679–1689. http://dx.doi.org/10.1002/hep.2456310.1002/hep.24563Search in Google Scholar PubMed

[2] Zhang, Y., Yang, L. and Chen, L.L. Life without A tail: New formats of long noncoding RNAs. Int. J. Biochem Cell Biol. 2013. DOI: 10.1016/j.biocel.2013.10.009. 10.1016/j.biocel.2013.10.009Search in Google Scholar PubMed

[3] Martianov, I., Ramadass, A., Serra Barros, A., Chow, N. and Akoulitchev, A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445 (2007) 666–670. http://dx.doi.org/10.1038/nature0551910.1038/nature05519Search in Google Scholar PubMed

[4] Uhler, J.P., Hertel, C. and Svejstrup, J.Q. A role for noncoding transcription in activation of the yeast PHO5 gene. Proc. Natl. Acad. Sci. USA 104 (2007) 8011–8816. http://dx.doi.org/10.1073/pnas.070243110410.1073/pnas.0702431104Search in Google Scholar PubMed PubMed Central

[5] Martens, J.A., Laprade, L. and Winston, F. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429 (2004) 571–574. http://dx.doi.org/10.1038/nature0253810.1038/nature02538Search in Google Scholar PubMed

[6] Rinn, J.L., Kertesz, M, Wang, J.K., Squazzo, S.L., Xu, X, Brugmann, S.A., Goodnough, L.H., Helms, J.A., Farnham, P.J., Segal, E. and Chang, H.Y. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 129 (2007) 1311–1323. http://dx.doi.org/10.1016/j.cell.2007.05.02210.1016/j.cell.2007.05.022Search in Google Scholar PubMed PubMed Central

[7] Sleutels, F., Zwart, R. and Barlow, D.P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415 (2002) 810–813. http://dx.doi.org/10.1038/415810a10.1038/415810aSearch in Google Scholar PubMed

[8] Martianov, I., Ramadass, A., Serra Barros, A., Chow, N. and Akoulitchev, A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445 (2007) 666–670. http://dx.doi.org/10.1038/nature0551910.1038/nature05519Search in Google Scholar

[9] Yang, F., Zhang, L., Huo, X.S., Yuan, J.H., Xu, D., Yuan, S.X., Zhu, N., Zhou, W.P., Yang, G.S., Wang, Y.Z., Shang, J.L., Gao, C.F., Zhang, F.R., Wang, F. and Sun, S.H. Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology 54 (2011) 1679–1689. http://dx.doi.org/10.1002/hep.2456310.1002/hep.24563Search in Google Scholar

[10] Wan, G., Hu, X., Liu, Y., Han, C., Sood, A.K., Calin, G.A., Zhang, X. and Lu, X. A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation. EMBO J. 32 (2013) 2833–2847. http://dx.doi.org/10.1038/emboj.2013.22110.1038/emboj.2013.221Search in Google Scholar PubMed PubMed Central

[11] Gao, L., Mai, A., Li, X., Lai, Y., Zheng, J., Yang, Q., Wu, J., Nan, A., Ye, S. and Jiang, Y. LncRNA-DQ786227-mediated cell malignant transformation induced by benzo(a)pyrene. Toxicol Lett. 223 (2013) 205–210. http://dx.doi.org/10.1016/j.toxlet.2013.09.01510.1016/j.toxlet.2013.09.015Search in Google Scholar PubMed

[12] Song, G., Shen, Y., Zhu, J., Liu, H., Liu, M., Shen, Y.Q., Zhu, S., Kong, X., Yu, Z. and Qian, L. Integrated analysis of dysregulated lncRNA expression in fetal cardiac tissues with ventricular septal defect. PLoS One 8 (2013) e77492. http://dx.doi.org/10.1371/journal.pone.007749210.1371/journal.pone.0077492Search in Google Scholar PubMed PubMed Central

[13] Sui, W., Lin, H., Peng, W., Huang, Y., Chen, J., Zhang, Y. and Dai, Y. Molecular dysfunctions in acute rejection after renal transplantation revealed by integrated analysis of transcription factor, microRNA and long noncoding RNA. Genomics 102 (2013) 310–322. http://dx.doi.org/10.1016/j.ygeno.2013.05.00210.1016/j.ygeno.2013.05.002Search in Google Scholar PubMed

[14] Ravasi, T., Suzuki, H., Pang, K.C., Katayama, S., Furuno, M., Okunishi, R., Fukuda, S., Ru, K., Frith, M.C., Gongora, M.M., Grimmond, S.M., Hume, D.A., Hayashizaki, Y. and Mattick, J.S. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res. 16 (2006) 11–19. http://dx.doi.org/10.1101/gr.420020610.1101/gr.4200206Search in Google Scholar PubMed PubMed Central

[15] Hansen, T.B., Wiklund, E.D., Bramsen, J.B., Villadsen, S.B., Statham, A.L., Clark, S.J. and Kjems, J. miRNA-dependent gene silencing involving Ago2- mediated cleavage of a circular antisense RNA. EMBO J. 30 (2011) 4414–4422. http://dx.doi.org/10.1038/emboj.2011.35910.1038/emboj.2011.359Search in Google Scholar PubMed PubMed Central

[16] Yang, H., Zhong, Y., Xie, H., Lai, X., Xu, M., Nie, Y., Liu, S. and Wan, Y.J. Induction of the liver cancer-down-regulated long noncoding RNA uc002mbe.2 mediates trichostatin-induced apoptosis of liver cancer cells. Biochem Pharmacol. 85 (2013) 1761–1769. http://dx.doi.org/10.1016/j.bcp.2013.04.02010.1016/j.bcp.2013.04.020Search in Google Scholar PubMed PubMed Central

[17] Yang, F., Huo, X.S., Yuan, S.X., Zhang, L., Zhou, W.P., Wang, F. and Sun, S.H. Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol. Cell. 49 (2013) 1083–1096. http://dx.doi.org/10.1016/j.molcel.2013.01.01010.1016/j.molcel.2013.01.010Search in Google Scholar PubMed

[18] Cawley, S., Bekiranov, S., Ng, H.H., Kapranov, P., Sekinger, E.A., Kampa, D., Piccolboni, A., Sementchenko, V., Cheng, J., Williams, A.J., Wheeler, R., Wong, B., Drenkow, J., Yamanaka, M., Patel, S., Brubaker, S., Tammana, H., Helt, G., Struhl, K. and Gingeras, T.R. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116 (2004) 499–509. http://dx.doi.org/10.1016/S0092-8674(04)00127-810.1016/S0092-8674(04)00127-8Search in Google Scholar

[19] Clark, M.B., Johnston, R.L., Inostroza-Ponta, M., Fox, A.H., Fortini, E., Moscato, P., Dinger, M.E. and Mattick, J.S. Genome-wide analysis of long noncoding RNA stability. Genome Res. 22 (2012) 885–898. http://dx.doi.org/10.1101/gr.131037.11110.1101/gr.131037.111Search in Google Scholar PubMed PubMed Central

[20] Diederichs, S. The four dimensions of noncoding RNA conservation. Trends Genet. 30 (2014) 121–123. http://dx.doi.org/10.1016/j.tig.2014.01.00410.1016/j.tig.2014.01.004Search in Google Scholar PubMed

[21] Plath, K., Mlynarczyk-Evans, S, Nusinow, D.A. and Panning, B. Xist RNA and the mechanism of X chromosome inactivation. Annu. Rev. Genet. 36 (2002) 233–278. http://dx.doi.org/10.1146/annurev.genet.36.042902.09243310.1146/annurev.genet.36.042902.092433Search in Google Scholar PubMed

[22] Guttman, M., Amit, I., Garber, M., French, C., Lin, M.F., Feldser, D., Huarte, M., Zuk, O., Carey, B.W., Cassady, J.P., Cabili, M.N., Jaenisch, R., Mikkelsen, T.S., Jacks, T., Hacohen, N., Bernstein, B.E., Kellis, M., Regev, A., Rinn, J.L. and Lander, E.S. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458 (2009) 223–227. http://dx.doi.org/10.1038/nature0767210.1038/nature07672Search in Google Scholar PubMed PubMed Central

[23] Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., Guernec, G., Martin, D., Merkel, A., Knowles, D.G., Lagarde, J., Veeravalli, L., Ruan, X., Ruan, Y., Lassmann, T., Carninci, P., Brown, J.B., Lipovich, L., Gonzalez, J.M., Thomas, M., Davis, C.A., Shiekhattar, R., Gingeras, T.R., Hubbard, T.J., Notredame, C., Harrow, J. and Guigó, R. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22 (2012) 1775–1789. http://dx.doi.org/10.1101/gr.132159.11110.1101/gr.132159.111Search in Google Scholar PubMed PubMed Central

[24] Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M.C., Maeda, N, Oyama, R., Ravasi, T., Lenhard, B., Wells, C., Kodzius, R., Shimokawa, K., Bajic, V.B., Brenner, S.E., Batalov, S., Forrest, A.R., Zavolan, M., Davis, M.J., Wilming, L.G., Aidinis, V., Allen, J.E., Ambesi-Impiombato, A., Apweiler, R., Aturaliya, R.N., Bailey, T.L., Bansal, M., Baxter, L., Beisel, K.W., Bersano, T., Bono, H., Chalk, A.M., Chiu, K.P., Choudhary, V., Christoffels, A., Clutterbuck, D.R., Crowe, M.L., Dalla, E., Dalrymple, B.P., de Bono, B., Della Gatta, G., di Bernardo, D., Down, T., Engstrom, P., Fagiolini, M., Faulkner, G., Fletcher, C.F., Fukushima, T., Furuno, M., Futaki, S., Gariboldi, M., Georgii-Hemming, P., Gingeras, T.R., Gojobori, T., Green, R.E., Gustincich, S., Harbers, M., Hayashi, Y., Hensch, T.K., Hirokawa, N., Hill, D., Huminiecki, L., Iacono, M., Ikeo, K., Iwama, A., Ishikawa, T., Jakt, M., Kanapin, A., Katoh, M., Kawasawa, Y., Kelso, J., Kitamura, H., Kitano, H., Kollias, G., Krishnan, S.P., Kruger, A., Kummerfeld, S.K., Kurochkin, I.V., Lareau, L.F., Lazarevic, D., Lipovich, L., Liu, J., Liuni, S., McWilliam, S., Madan Babu, M., Madera, M., Marchionni, L., Matsuda, H., Matsuzawa, S., Miki, H., Mignone, F., Miyake, S., Morris, K., Mottagui-Tabar, S., Mulder, N., Nakano, N., Nakauchi, H., Ng, P., Nilsson, R., Nishiguchi, S., Nishikawa, S., Nori, F., Ohara, O., Okazaki, Y., Orlando, V., Pang, K.C., Pavan, W.J., Pavesi, G., Pesole, G., Petrovsky, N., Piazza, S., Reed, J., Reid, J.F., Ring, B.Z., Ringwald, M., Rost, B., Ruan, Y., Salzberg, S.L., Sandelin, A., Schneider, C., Schönbach, C., Sekiguchi, K., Semple, C.A., Seno, S., Sessa, L., Sheng, Y., Shibata, Y., Shimada, H., Shimada, K., Silva, D., Sinclair, B., Sperling, S., Stupka, E., Sugiura, K, Sultana, R., Takenaka, Y., Taki, K., Tammoja, K., Tan, S.L., Tang, S., Taylor, M.S., Tegner, J., Teichmann, S.A., Ueda, H.R., van Nimwegen, E., Verardo, R., Wei, C.L., Yagi, K., Yamanishi, H., Zabarovsky, E., Zhu, S., Zimmer, A., Hide, W., Bult, C., Grimmond, S.M., Teasdale, R.D., Liu, E.T., Brusic, V., Quackenbush, J., Wahlestedt, C., Mattick, J.S., Hume, D.A., Kai, C., Sasaki, D., Tomaru, Y., Fukuda, S., Kanamori-Katayama, M., Suzuki, M., Aoki, J., Arakawa, T., Iida, J., Imamura, K., Itoh, M., Kato, T., Kawaji, H., Kawagashira, N., Kawashima, T., Kojima, M., Kondo, S., Konno, H., Nakano, K., Ninomiya, N., Nishio, T., Okada, M., Plessy, C., Shibata, K., Shiraki, T., Suzuki, S., Tagami, M., Waki, K., Watahiki, A., Okamura-Oho, Y., Suzuki, H., Kawai, J., Hayashizaki, Y.; FANTOM Consortium; RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group). The transcriptional landscape of the mammalian genome. Science 309 (2005) 1559–1563. http://dx.doi.org/10.1126/science.111201410.1126/science.1112014Search in Google Scholar PubMed

[25] Mohammad, F., Pandey, G.K., Mondal. T., Enroth, S., Redrup, L., Gyllensten, U. and Kanduri, C. Long noncoding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing. Development 139 (2012) 2792–2803. http://dx.doi.org/10.1242/dev.07956610.1242/dev.079566Search in Google Scholar PubMed

[26] Chen, Z.J. and Pikaard, C.S. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev. 11 (1997) 2124–2136. http://dx.doi.org/10.1101/gad.11.16.212410.1101/gad.11.16.2124Search in Google Scholar PubMed PubMed Central

[27] Selker, E.U. Trichostatin A causes selective loss of DNA methylation in Neurospora. Proc. Natl. Acad. Sci. USA 95 (1998) 9430–9435. http://dx.doi.org/10.1073/pnas.95.16.943010.1073/pnas.95.16.9430Search in Google Scholar PubMed PubMed Central

[28] Braconi, C., Kogure, T., Valeri, N., Huang, N., Nuovo, G., Costinean, S., Negrini, M., Miotto, E., Croce, C.M. and Patel, T. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene 30 (2011) 4750–4756. http://dx.doi.org/10.1038/onc.2011.19310.1038/onc.2011.193Search in Google Scholar PubMed PubMed Central

[29] Amort, T., Soulière, M.F., Wille, A., Jia, X.Y., Fiegl, H., Wörle, H., Micura, R. and Lusser, A. Long non-coding RNAs as targets for cytosine methylation. RNA Biol. 10 (2013) 1003–1008. http://dx.doi.org/10.4161/rna.2445410.4161/rna.24454Search in Google Scholar PubMed PubMed Central

[30] Yang, H., Zhong, Y., Xie, H., Lai, X., Xu, M., Nie, Y., Liu, S. and Wan, Y.J. Induction of the liver cancer-down-regulated long noncoding RNA uc002mbe.2 mediates trichostatin-induced apoptosis of liver cancer cells. Biochem Pharmacol. 85 (2013) 1761–1769. http://dx.doi.org/10.1016/j.bcp.2013.04.02010.1016/j.bcp.2013.04.020Search in Google Scholar PubMed PubMed Central

[31] Saxonov, S., Berg, P. and Brutlag, D.L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl. Acad. Sci. USA 103 (2006) 1412–1417. http://dx.doi.org/10.1073/pnas.051031010310.1073/pnas.0510310103Search in Google Scholar PubMed PubMed Central

[32] Elango, N. and Yi, S.V. DNA methylation and structural and functional bimodality of vertebrate promoters. Mol. Biol. Evol. 25 (2008) 1602–1608. http://dx.doi.org/10.1093/molbev/msn11010.1093/molbev/msn110Search in Google Scholar PubMed

[33] Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.K., Koche, R.P., Lee, W., Mendenhall, E., O’Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E.S. and Bernstein, B.E. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448 (2007) 553–560. http://dx.doi.org/10.1038/nature0600810.1038/nature06008Search in Google Scholar PubMed PubMed Central

[34] Dinger, M.E., Amaral, P.P., Mercer, T.R., Pang, K.C., Bruce, S.J., Gardiner, B.B., Askarian-Amiri, M.E., Ru, K., Soldà, G., Simons, C., Sunkin, S.M., Crowe, M.L., Grimmond, S.M., Perkins, A.C. and Mattick, J.S. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 18 (2008) 1433–1445. http://dx.doi.org/10.1101/gr.078378.10810.1101/gr.078378.108Search in Google Scholar PubMed PubMed Central

[35] Khalil, A.M., Guttman, M., Huarte, M., Garber, M., Raj, A., Rivea Morales, D., Thomas, K., Presser, A., Bernstein, B.E., van, Oudenaarden, A., Regev, A., Lander, E.S. and Rinn, J.L. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA 106 (2009) 11667–11672. http://dx.doi.org/10.1073/pnas.090471510610.1073/pnas.0904715106Search in Google Scholar PubMed PubMed Central

[36] Dharap, A., Nakka, V.P., and Vemuganti, R. Effect of focal ischemia on long noncoding RNAs. Stroke 43 (2012) 2800–2802. http://dx.doi.org/10.1161/STROKEAHA.112.66946510.1161/STROKEAHA.112.669465Search in Google Scholar PubMed PubMed Central

[37] Uesaka, M., Nishimura, O., Go, Y., Nakashima, K., Agata, K., Imamura, T. Bidirectional promoters are the major source of gene activation-associated non-coding RNAs in mammals. BMC Genomics 15 (2014). DOI: 10.1186/1471-2164-15-35. 10.1186/1471-2164-15-35Search in Google Scholar PubMed PubMed Central

[38] Engstrom, P.G., Suzuki, H., Ninomiya, N., Akalin, A., Sessa, L., Lavorgna, G., Brozzi, A., Luzi, L., Tan, S.L., Yang, L., Kunarso, G., Ng, E.L., Batalov, S., Wahlestedt, C., Kai, C., Kawai, J., Carninci, P., Hayashizaki, Y., Wells, C., Bajic, V.B., Orlando, V., Reid, J.F., Lenhard, B., Lipovich, L. Complex Loci in human and mouse genomes. PLoS Genet. 2 (2006) e47. http://dx.doi.org/10.1371/journal.pgen.002004710.1371/journal.pgen.0020047Search in Google Scholar PubMed PubMed Central

[39] Wang, Y., Pang, W.J., Wei, N., Xiong, Y., Wu, W.J., Zhao, C.Z., Shen, Q.W. and Yang, G.S. Identification, stability and expression of Sirt1 antisense long non-coding RNA. Gene 539 (2014) 117–124. http://dx.doi.org/10.1016/j.gene.2014.01.03710.1016/j.gene.2014.01.037Search in Google Scholar PubMed

[40] Yoon, J.H., Abdelmohsen, K. and Gorospe, M. Posttranscriptional gene regulation by long noncoding RNA. J. Mol. Biol. 425 (2013) 3723–3730. http://dx.doi.org/10.1016/j.jmb.2012.11.02410.1016/j.jmb.2012.11.024Search in Google Scholar PubMed PubMed Central

[41] Wilusz, J.E., JnBaptiste, C.K., Lu, L.Y., Kuhn, C.D., Joshua-Tor, L. and Sharp, P.A. A triple helix stabilizes the 3’ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev. 26 (2012) 2392–2407. http://dx.doi.org/10.1101/gad.204438.11210.1101/gad.204438.112Search in Google Scholar PubMed PubMed Central

[42] Brown, J.A., Valenstein, M.L., Yario, T.A., Tycowski, K.T. and Steitz, J.A. Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENβnoncoding RNAs. Proc. Natl. Acad. Sci. USA 109 (2012) 19202–19207. http://dx.doi.org/10.1073/pnas.121733810910.1073/pnas.1217338109Search in Google Scholar PubMed PubMed Central

[43] Yoon, J.H., Abdelmohsen, K., Srikantan, S., Yang, X., Martindale, J.L., De, S., Huarte, M., Zhan, M., Becker, K.G. and Gorospe, M. LincRNA-p21 suppresses target mRNA translation. Mol. Cell. 47 (2012) 648–655. http://dx.doi.org/10.1016/j.molcel.2012.06.02710.1016/j.molcel.2012.06.027Search in Google Scholar PubMed PubMed Central

[44] Jalali, S., Bhartiya, D., Lalwani, M.K., Sivasubbu, S. and Scaria, V. Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS One 8 (2013) e53823. http://dx.doi.org/10.1371/journal.pone.005382310.1371/journal.pone.0053823Search in Google Scholar PubMed PubMed Central

[45] Chiyomaru, T., Fukuhara, S., Saini, S., Majid, S., Deng, G., Shahryary, V., Chang, I., Tanaka, Y., Enokida, H., Nakagawa, M., Dahiya, R. and Yamamura, S. Long non-coding RNA HOTAIR is targeted and regulated by miR-141 in human cancer cells. J. Biol. Chem. 18 (2014) 12550–12565. http://dx.doi.org/10.1074/jbc.M113.48859310.1074/jbc.M113.488593Search in Google Scholar PubMed PubMed Central

[46] Yoon, J.H., Abdelmohsen K., Kim J., Yang X., Martindale J.L., Tominaga-Yamanaka K., White E.J., Orjalo A.V., Rinn J.L., Kreft S.G., Wilson G.M. and Gorospe M. Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat. Commun. 2013. DOI: 10.1038/ncomms3939. 10.1038/ncomms3939Search in Google Scholar PubMed PubMed Central

[47] Han, Y., Liu, Y., Zhang, H., Wang, T., Diao, R., Jiang, Z., Gui, Y. and Cai, Z. Hsa-miR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long noncoding RNA MALAT1. FEBS Lett. 587 (2013) 3875–3882. http://dx.doi.org/10.1016/j.febslet.2013.10.02310.1016/j.febslet.2013.10.023Search in Google Scholar PubMed

[48] Huang, J., Zhou, N., Watabe, K., Lu, Z., Wu, F., Xu, M. and Mo, Y.Y. Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell Death Dis. 5 (2014) e1008. http://dx.doi.org/10.1038/cddis.2013.54110.1038/cddis.2013.541Search in Google Scholar PubMed PubMed Central

[49] Mercer, T.R. and Mattick, J.S. Structure and function of long noncoding RNAs in epigenetic regulation. Nat. Struct. Mol. Biol. 20 (2013) 300–307. http://dx.doi.org/10.1038/nsmb.248010.1038/nsmb.2480Search in Google Scholar PubMed

[50] Yang, Y., Zhou, X. and Jin, Y. ADAR-mediated RNA editing in non-coding RNA sequences. Sci. China Life Sci. 56 (2013) 944–952. http://dx.doi.org/10.1007/s11427-013-4546-510.1007/s11427-013-4546-5Search in Google Scholar PubMed

[51] Cantara, W.A., Crain, P.F., Rozenski, J., McCloskey, J.A., Harris, K.A., Zhang, X., Vendeix, F.A., Fabris, D. and Agris, P.F. The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res. 39 (2011)(Database issue) D195–201. http://dx.doi.org/10.1093/nar/gkq102810.1093/nar/gkq1028Search in Google Scholar PubMed PubMed Central

[52] Wang, J., Liu, X., Wu, H., Ni, P., Gu, Z., Qiao, Y., Chen, N., Sun, F. and Fan, Q. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 38 (2010) 5366–5383. http://dx.doi.org/10.1093/nar/gkq28510.1093/nar/gkq285Search in Google Scholar PubMed PubMed Central

[53] Leucci, E., Patella, F., Waage, J., Holmstrøm, K., Lindow, M., Porse, B., Kauppinen, S. and Lund, A.H. microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus. Sci. Rep. 3 (2013). DOI: 10.1038/srep02535. 10.1038/srep02535Search in Google Scholar PubMed PubMed Central

[54] Chiyomaru, T., Yamamura, S., Fukuhara, S., Yoshino, H., Kinoshita, T., Majid, S., Saini, S., Chang, I., Tanaka, Y., Enokida, H., Seki, N., Nakagawa, M. and Dahiya, R. Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR. PLoS One 8 (2013) e70372. http://dx.doi.org/10.1371/journal.pone.007037210.1371/journal.pone.0070372Search in Google Scholar PubMed PubMed Central

Published Online: 2014-12-21
Published in Print: 2014-12-1

© 2014 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-014-0212-6/html
Scroll to top button