Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter February 26, 2014

Generation of adenosine tri-phosphate in Leishmania donovani amastigote forms

  • Subhasish Mondal EMAIL logo , Jay Roy and Tanmoy Bera
From the journal Acta Parasitologica

Abstract

Leishmania, the causative agent of various forms of leishmaniasis, is the significant cause of morbidity and mortality. Regarding energy metabolism, which is an essential factor for the survival, parasites adapt to the environment under low oxygen tension in the host using metabolic systems which are very different from that of the host mammals. We carried out the study of susceptibilities to different inhibitors of mitochondrial electron transport chain and studies on substrate level phosphorylation in wild-type L. donovani. The amastigote forms of L. donovani are independent on oxidative phosphorylation for ATP production. Indeed, its cell growth was not inhibited by excess oligomycin and dicyclohexylcarbodiimide, which are the most specific inhibitors of the mitochondrial Fo/F1-ATP synthase. In contrast, mitochondrial complex I inhibitor rotenone and complex III inhibitor antimycin A inhibited amastigote cell growth, suggesting the role of complex I and complex III in cell survival. Complex II appeared to have no role in cell survival. To further investigate the site of ATP production, we studied the substrate level phosphorylation, which was involved in the synthesis of ATP. Succinate-pyruvate couple showed the highest substrate level phosphorylation in amastigotes whereas NADH-fumarate and NADH-pyruvate couples failed to produce ATP. In contrast, NADPH-fumarate showed the highest rate of ATP formation in promastigotes. Therefore, we can conclude that substrate level phosphorylation is essential for the survival of amastigote forms of Leishmania donovani.

[1] Assaily W., Benchimol S. 2006. Differential utilization of two ATPgenerating pathways is regulated by p53. Cancer Cell, 10, 4–6. DOI: 10.1016/j.ccr.2006.06.014. http://dx.doi.org/10.1016/j.ccr.2006.06.01410.1016/j.ccr.2006.06.014Search in Google Scholar

[2] Barak E., Amin-Spector S., Gerliak E., Goyard S., Holland N., Zilberstein D. 2005. Differentiation of Leishmania donovani in host free system: analysis of signal perception and response. Molecular and Biochemical Parasitology, 141, 99–108. DOI: 10.1016/j.molbiopara.2005.02.004. http://dx.doi.org/10.1016/j.molbiopara.2005.02.00410.1016/j.molbiopara.2005.02.004Search in Google Scholar

[3] Bente M., Harder S., Wiesgigl M., Heukeshoven J., Gelhous C., Kranse E., Clos J., Bruchhans I. 2003. Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovani. Proteomics, 3, 1811–1829. DOI: 10.1002/pmic.20030046. http://dx.doi.org/10.1002/pmic.200300462Search in Google Scholar

[4] Chakraborty B., Biswas S., Mondal S., Bera T. 2010. Stage specific developmental changes in the mitochondrial and surface membrane associated redox systems of Leishmania donovani promastigote and amastigote. Biochemistry (Moscow), 75, 494–504. DOI: 10.1134/S0006297910040140. http://dx.doi.org/10.1134/S000629791004014010.1134/S0006297910040140Search in Google Scholar

[5] Chappuis F., Sundar S., Haihe A., Ghalib H., Raijal S. 2007. Visceral Leishmaniasis: What are the needs for diagnosis, treatment and control ? Nature Reviews Microbiology, 5, 873–882. DOI: 10.1038/nrmicro1748. http://dx.doi.org/10.1038/nrmicro174810.1038/nrmicro1748Search in Google Scholar

[6] Coustou V., Bisteiro S., Brian M., Diolez P., Bouchaud V., Voisin P., Michels P.A.M., Canioni P., Beltz T., Bringaud F. 2003. ATP generation in the Trypanosoma brucei procyclic form: Cytosolic substrate level phosphorylation is essential, but not oxidative phosphorylation. Journal of Biological Chemistry, 278, 49625–49635. DOI 10.1074/jbc.M307872200. http://dx.doi.org/10.1074/jbc.M30787220010.1074/jbc.M307872200Search in Google Scholar

[7] Coombs G.H., Croft J.A., Hart D.T. 1982. A comparative study of Leishmania mexicana amastigotes and promastigotes: enzyme activities and subcellular locations. Molecular and Biochemical Parasitology, 5, 199–211. DOI: 10.1016/0166-6851(82) 90021-4. http://dx.doi.org/10.1016/0166-6851(82)90021-410.1016/0166-6851(82)90021-4Search in Google Scholar

[8] Debrabant A., Joshi M.B., Pimenta P.F., Dwyer D. 2004. Generation of Leishmania donovani axenic amastigotes: their growth and biological characteristics. International Journal of Parasitology, 34, 205–217. DOI: 10.1016/j.ijpara.2003.10.011. http://dx.doi.org/10.1016/j.ijpara.2003.10.01110.1016/j.ijpara.2003.10.011Search in Google Scholar

[9] Ephros M., Bitnun A., Shaked P., Waldman E., Zinberstein D. 1999. Stage-specific activity of pentavalent antimony against Leishmania donovani axenic amastigotes. Antimicrobial Agents and Chemotherapy, 43, 278–282. DOI: 0066-4804/99. Search in Google Scholar

[10] Gornall A.G., Bardawill C.J., David M.M. 1949. Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry, 177, 751–766. Search in Google Scholar

[11] Gupta N., Goyal N., Singha U.K., Bhakuni V., Roy R., Rastogi A.K. 1999. Characterization of intracellular metabolites of axenic amastigotes of Leishmania donovani by 1H NMR spectroscopy. Acta Tropica, 73, 121–133. DOI: 10.1016/S0001-706X(99)00020-0. http://dx.doi.org/10.1016/S0001-706X(99)00020-010.1016/S0001-706X(99)00020-0Search in Google Scholar

[12] Hassan H.F., Coombs G.H. 1985. Leishmania mexicana, purine metabolizing enzymes of amastigotes and promastigotes. Experimental Parasitology, 59, 139–150. DOI: 10.1016/0014-4894 (85)90066-9. http://dx.doi.org/10.1016/0014-4894(85)90066-910.1016/0014-4894(85)90066-9Search in Google Scholar

[13] Huber W., Koella J.C. 1993. A comparision of the methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Tropica, 55, 257–261. DOI: 10.1016/0001-706X(93) 90083-N. http://dx.doi.org/10.1016/0001-706X(93)90083-N10.1016/0001-706X(93)90083-NSearch in Google Scholar

[14] James P.E., Grinberg O.Y., Swartz H.M. 1998. Superoxide production by phagocytosing macrophages in relation to the intracellular distribution of oxygen. Journal of Leukocyte Biology, 64, 78–84. Search in Google Scholar

[15] Katwa S.D., Katyare S.S. 2003. A simplified method for inorganic phosphate determination and its application for phosphate analysis in enzyme assays. Analytical Biochemistry, 323, 180–187. DOI: 10.1016/j.ab.2003.08.024. http://dx.doi.org/10.1016/j.ab.2003.08.02410.1016/j.ab.2003.08.024Search in Google Scholar

[16] Lemorse S.L., Sereno D., Danlouede S., Veyret B., Brajon N., Vincendeau P. 1997. Leishmania spp.: nitric oxide-mediated metabolic inhibition of promastigotes and axenically grown amastigote forms. Experimental Parasitology, 86, 58–68. DOI: 10.1006/expr.1997.4151. http://dx.doi.org/10.1006/expr.1997.415110.1006/expr.1997.4151Search in Google Scholar

[17] Martin E., Simon M.W., Schaefer F.W., Mukkada A.J. 1976. Enzymes of carbohydrate metabolism in four human species of Leishmania: a comparative survey. Journal of Protozoology, 23, 600–607. DOI: 10.1111/j.1550-7408.1976.tb03850. http://dx.doi.org/10.1111/j.1550-7408.1976.tb03850.x10.1111/j.1550-7408.1976.tb03850.xSearch in Google Scholar

[18] Mattock N.M., Peters W. 1975. The experimental chemotherapy of leishmaniasis. II. The activity in tissue culture of some antiparasitic and antimicrobial compounds in clinical use. Annals of Tropical Medicine and Parasitology, 69, 359–371. Search in Google Scholar

[19] Mc Conville M.J., de Souza D., Saunders E., Likic V.A. Naderer T. 2007. Living in a phagolysosome; metabolism of Leishmania amastigotes. Trends in Parasitology, 23, 368–375. DOI: 10.1016/j.pt.2007.06.009. http://dx.doi.org/10.1016/j.pt.2007.06.00910.1016/j.pt.2007.06.009Search in Google Scholar

[20] Michels P.A.M., Michels J.P.J., Boonstra J., Konings W.N. 1979. Generation of an electropotential proton gradient in bacteria by the excretion of metabolic end products. FEMS Microbiology Letters, 5, 357–364. DOI: 10.1111/j.1574-6968.1979.tb03339. http://dx.doi.org/10.1111/j.1574-6968.1979.tb03339.x10.1111/j.1574-6968.1979.tb03339.xSearch in Google Scholar

[21] Naderer T., Mc Conville M.J. 2008. The Leishmania macrophage interaction: a metabolic perspective. Cellular Microbiology, 10, 301–308. DOI: 10.1111/j.1462-5822.2007.01096. http://dx.doi.org/10.1111/j.1462-5822.2007.01096.xSearch in Google Scholar

[22] Peters W., Trotter E.R., Robinson B.L. 1980. The experimental chemotherapy of leishmaniasis, VII. Drug responses of L. major and L. mexicana amazonensis, with an analysis of promising chemical leads to new antileishmanial agents. Annals of Tropical Medicine and Parasitology, 74, 321–335. Search in Google Scholar

[23] Rainey P.M., Spithill T.W., Mc Mahon-Pratt D., Pan A.A. 1991. Biochemical molecular characterization of Leishmania pefanoi amastigotes in continuos culture. Molecular and Biochemical Parasitology, 49, 111–118. DOI: 10.1016/0166-6851(91)90134-R. http://dx.doi.org/10.1016/0166-6851(91)90134-R10.1016/0166-6851(91)90134-RSearch in Google Scholar

[24] Rainey P.M., MacKenzie N.E. 1991. A carbon-13 nuclear magnetic resonance analysis of the products of glucose metabolism in Leishmania pifanoi amastigotes and promastigotes. Molecular and Biochemical Parasitology, 45, 307–315. DOI: 10.1016/0166-6851(91)90099-R. http://dx.doi.org/10.1016/0166-6851(91)90099-R10.1016/0166-6851(91)90099-RSearch in Google Scholar

[25] Rivas L., Chang L.P. 1983. Intraparasitophorous vacuolar pH of Leishmania mexicana infected macrophages. Biological Bulletin, 165, 536–537. Search in Google Scholar

[26] Rudzinska M.A., Alesandro P.A.D., Trager W. 1964. The fine structure of Leishmania donovani and the role of the kinetoplast in the leishmani-leptomonad transformation. Journal of Protozoology, 11, 166–191. DOI: 10.1111/j.1550-7408.1964.tb01739. http://dx.doi.org/10.1111/j.1550-7408.1964.tb01739.x10.1111/j.1550-7408.1964.tb01739.xSearch in Google Scholar

[27] Saar Y., Ransfold A., Waldman E., Mazareb S., Amin-Spector S., Plumblee J., Turco S.J., Zilberstein D. 1998. Characterization of developmentally regulated activities in axenic amastigotes of Leishmania donovani. Molecular and Biochemical Parasitology, 95, 9–20. DOI: 10.1016/S0166-6851(98)00062-0. http://dx.doi.org/10.1016/S0166-6851(98)00062-010.1016/S0166-6851(98)00062-0Search in Google Scholar

[28] Sereno D., Lemesre J.L. 1997. Axenically cultured amastigote forms as an in vitro model for investigation of antileishmanial agents. Antimicrobial Agents and Chemotherapy, 41, 972–976. DOI: 0066-4804/97. Search in Google Scholar

[29] Singh A.K., Mukhopadhyay C., Biswas S., Singh V.K., Mukhopadhyay C.K. 2012. Intracellular pathogen Leishmania donovani activates hypoxia inducible factor-1 by dual mechanism for survival advantage within macrophage. Plos One, 7, e38489. DOI: 10.1371/journal.pone.0038489. http://dx.doi.org/10.1371/journal.pone.003848910.1371/journal.pone.0038489Search in Google Scholar PubMed PubMed Central

[30] Tielens A.G., Van Hellemond J.J. 1998. The electron transport chain in anaerobically functioning eukaryotes. Biochimica et Biophysica Acta (Bioenergetics), 1365, 71–78. DOI: 10.1016/S0005-2728(98)00045-0. http://dx.doi.org/10.1016/S0005-2728(98)00045-010.1016/S0005-2728(98)00045-0Search in Google Scholar

[31] Van Hellemond J.J., Van der Klei A., van Weelden S.W., Tielens A.G. 2003. Biochemical and evolutionary aspects of anaerobically functioning mitochondria. Philosophical Transactions of the Royal Society B: Biological Science, 358, 205–213. DOI: 10.1098/rstb.2002.1182. http://dx.doi.org/10.1098/rstb.2002.118210.1098/rstb.2002.1182Search in Google Scholar PubMed PubMed Central

[32] Wennberg E., Weiss L. 1969. The structure of the spleen and hemolysis. Annual Review of Medicine, 20, 29–40. DOI: 10.1146/annurev.me.20.020169.000333. http://dx.doi.org/10.1146/annurev.me.20.020169.00033310.1146/annurev.me.20.020169.000333Search in Google Scholar PubMed

[33] Zilberstein D., Shapira M. 1994. The role of pH and temperature in the development of Leishmania parasites. Annual Review of Microbiology, 48, 449–470. DOI: 10.1146/annurev.mi.48.100194.002313. http://dx.doi.org/10.1146/annurev.mi.48.100194.00231310.1146/annurev.mi.48.100194.002313Search in Google Scholar PubMed

Published Online: 2014-2-26
Published in Print: 2014-3-1

© 2014 W. Stefański Institute of Parasitology, PAS

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11686-014-0203-9/html
Scroll to top button