Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter March 27, 2008

Endocrine regulation of the reproduction in crustaceans: Identification of potential targets for toxicants and environmental contaminants

  • Edita Mazurová EMAIL logo , Klára Hilscherová , Rita Triebskorn , Heinz-R. Köhler , Blahoslav Maršálek and Luděk Bláha
From the journal Biologia

Abstract

Progress in ecotoxicological research documents that crustaceans are highly vulnerable to diverse chemicals and toxicants in the environment. In particular, pollutants affecting endocrine homeostasis in crustaceans (i.e., endocrine disruptors) are intensively studied, and serious reproductive disorders have been documented. In this review, current knowledge about the endocrine regulation of the crustacean reproduction is put together with the published ecotoxicological data with an attempt to summarize the potential of xenobiotics to affect crustacean reproduction. Following gaps and trends were identified: (1) Studies are required in the field of neurohormone (serotonin and dopamine) regulation of the reproduction and possible modulations by environmental toxicants such as antidepressant drugs. (2) Molting-related parameters (regulated by ecdysteroid hormones) are closely coordinated with the development and reproduction cycles in crustaceans (cross-links with methyl farnesoate signalling), and their susceptibility to toxicants should be studied. (3) Other biochemical targets for xenobiotics were recently discovered in crustaceans and these should be explored by further ecotoxicological studies (e.g., new information about ecdysteroid receptor molecular biology). (4) Some sex steroid hormones known from vertebrates (testosterone, progesterone) have been reported in crustaceans but knowledge about their targets (crustacean steroid receptors) and signalling is still limited. (5) Determination of the sex in developing juveniles (affecting the sex ratio in population) is a sensitive parameter to various xenobiotics (including endocrine disruptors) but its modulation by general environmental stress and non-specific toxicity should be further studied.

[1] Abdu U., Davis C., Khalaila I. & Sagi A. 2002. The vitellogenin cDNA of Cherax quadricarinatus encodes a lipoprotein with calcium binding ability, and its expression is induced following the removal of the androgenic gland in a sexually plastic system. Gen. Comp. Endocrinol. 127: 263–272. http://dx.doi.org/10.1016/S0016-6480(02)00053-910.1016/S0016-6480(02)00053-9Search in Google Scholar

[2] Abdu U., Takac P., Laufer H. & Sagi A. 1998. Effect of methyl farnesoate on late larval development and metamorphosis in the prawn Macrobrachium rosenbergii (Decapoda, Palaemonidae): A juvenoid-like effect? Biol. Bull. 195: 112–119. http://dx.doi.org/10.2307/154281810.2307/1542818Search in Google Scholar

[3] Allner B., Wegener G., Knacker T. & Stahlschmidt-Allner P. 1999. Electrophoretic determination of estrogen-induced protein in fish exposed to synthetic and naturally occurring chemicals. Sci. Total Environ. 233: 21–31. http://dx.doi.org/10.1016/S0048-9697(99)00176-X10.1016/S0048-9697(99)00176-XSearch in Google Scholar

[4] Andersen H.R., Halling-Sorensen B. & Kusk K.O. 1999. A parameter for detecting estrogenic exposure in the copepod Acartia tonsa. Ecotoxicol. Environ. Saf. 44: 56–61. http://dx.doi.org/10.1006/eesa.1999.180010.1006/eesa.1999.1800Search in Google Scholar

[5] Andersen H.R., Wollenberger L., Halling-Sorensen B. & Kusk K.O. 2001. Development of copepod nauplii to copepodites — A parameter for chronic toxicity including endocrine disruption. Environ. Toxicol. Chem. 20: 2821–2829. http://dx.doi.org/10.1897/1551-5028(2001)020<2821:DOCNTC>2.0.CO;210.1897/1551-5028(2001)020<2821:DOCNTC>2.0.CO;2Search in Google Scholar

[6] Baldwin W.S., Milam D.L. & LeBlanc G.A. 1995. Physiological and biochemical perturbations in Daphnia magna following exposure to the model environmental estrogen diethylstilbestrol. Environ. Toxicol. Chem. 14: 945–952. http://dx.doi.org/10.1897/1552-8618(1995)14[945:PABPID]2.0.CO;2Search in Google Scholar

[7] Billinghurst Z., Clare A.S. & Depledge M.H. 2001. Effects of 4-n-nonylphenol and 17 beta-oestradiol on early development of the barnacle Elminius modestus. J. Exp. Mar. Biol. Ecol. 257: 255–268. http://dx.doi.org/10.1016/S0022-0981(00)00338-510.1016/S0022-0981(00)00338-5Search in Google Scholar

[8] Billinghurst Z., Clare A.S., Matsumura K. & Depledge M.H. 2000. Induction of cypris major protein in barnacle larvae by exposure to 4-n-nonylphenol and 17 beta-oestradiol. Aquat. Toxicol. 47: 203–212. http://dx.doi.org/10.1016/S0166-445X(99)00018-110.1016/S0166-445X(99)00018-1Search in Google Scholar

[9] Breitholtz M. & Bengtsson B.E. 2001. Oestrogens have no hormonal effect on the development and reproduction of the harpacticoid copepod Nitocra spinipes. Mar. Pollut. Bull. 42: 879–886. http://dx.doi.org/10.1016/S0025-326X(01)00046-710.1016/S0025-326X(01)00046-7Search in Google Scholar

[10] Brian J.V. 2005. Inter-population variability in the reproductive morphology of the shore crab (Carcinus maenas): evidence of endocrine disruption in a marine crustacean? Mar. Pollut. Bull. 50: 410–416. http://dx.doi.org/10.1016/j.marpolbul.2004.11.02310.1016/j.marpolbul.2004.11.023Search in Google Scholar

[11] Brooks B.W., Turner P.K., Stanley J.K., Weston J.J., Glidewell E.A., Foran C.M., Slattery M., La Point T.W. & Huggett D.B. 2003. Waterborne and sediment toxicity of fluoxetine to select organisms. Chemosphere 52: 135–142. http://dx.doi.org/10.1016/S0045-6535(03)00103-610.1016/S0045-6535(03)00103-6Search in Google Scholar

[12] Brown R.J., Conradi M. & Depledge M.H. 1999. Long-term exposure to 4-nonylphenol affects sexual differentiation and growth of the amphipod Corophium volutator (Pallas, 1766). Sci. Total Environ. 233: 77–88. http://dx.doi.org/10.1016/S0048-9697(99)00181-310.1016/S0048-9697(99)00181-3Search in Google Scholar

[13] Brown R.J., Rundle S.D., Hutchinson T.H., Williams T.D. & Jones M.B. 2003. A copepod life-cycle test and growth model for interpreting the effects of lindane. Aquat. Toxicol. 63: 1–11. http://dx.doi.org/10.1016/S0166-445X(02)00120-010.1016/S0166-445X(02)00120-0Search in Google Scholar

[14] Chang E.S. 1993. Comparative endocrinology of molting and reproduction: insects and crustaceans. Annu. Rev. Entomol. 38: 161–80. http://dx.doi.org/10.1146/annurev.en.38.010193.00111310.1146/annurev.en.38.010193.001113Search in Google Scholar

[15] Charniaux-Cotton H. 1960. Sex determination, pp. 411–447. In: Waterman T.H. (ed.), The Physiology of Crustacea, Academic Press, New York. 10.1016/B978-0-12-395628-6.50019-1Search in Google Scholar

[16] Charniaux-Cotton H. & Payen G. 1988. Crustacean reproduction, pp. 279–303. In: Laufer H. & Downer R.G.H. (eds), Endocrinology of Selected Invertebrate Types, Alan R. Liss, New York, USA. Search in Google Scholar

[17] Chaves A.R. 2000. Effect of X-organ sinus gland extract on S35 methionine incorporation to the ovary of the red swamp crawfish Procambarus clarkii. Comp. Biochem. Physiol. A 126: 407–413. http://dx.doi.org/10.1016/S1095-6433(00)00225-710.1016/S1095-6433(00)00225-7Search in Google Scholar

[18] Chung J.S. & Webster S.G. 2003. Moult cycle-related changes in biological activity of moult-inhibiting hormone (MIH) and crustacean hyperglycaemic hormone (CHH) in the crab, Carcinus maenas — From target to transcript. Eur. J. Biochem. 270: 3280–3288. http://dx.doi.org/10.1046/j.1432-1033.2003.03720.x10.1046/j.1432-1033.2003.03720.xSearch in Google Scholar

[19] Colbourne J.K., Singan V.R. & Gilbert D.G. 2005. WFleaBase: the Daphnia genome database. BMC Bioinformatics 6: 45–49. http://dx.doi.org/10.1186/1471-2105-6-4510.1186/1471-2105-6-45Search in Google Scholar

[20] Cooke I.M. & Sullivan R.E. 1982. Hormones and neurosecretion, pp. 205–287. In: Atwood H.L. & Sanderman D.C. (eds), The Biology of Crustacea — Neurobiology: Structure and Function, Academic Press, New York, London, Paris, San Diego, San Francisco, Sao Paolo, Sydney, Tokyo, Toronto. Search in Google Scholar

[21] Cripe G.M., McKenney C.L., Hoglund M.D. & Harris P.S. 2003. Effects of fenoxycarb exposure on complete larval development of the xanthid crab, Rhithropanopeus harrisii. Environ. Pollut. 125: 295–299. http://dx.doi.org/10.1016/S0269-7491(02)00414-110.1016/S0269-7491(02)00414-1Search in Google Scholar

[22] Dinan L., Bourne P., Whiting P., Dhadialla T.S. & Hutchinson T.H. 2001. Screening of environmental contaminants for ecdysteroid agonist and antagonist activity using the Drosophila melanogaster BII cel in vitro assay. Environ. Toxicol. Chem. 20: 2038–2046. http://dx.doi.org/10.1897/1551-5028(2001)020<2038:SOECFE>2.0.CO;210.1897/1551-5028(2001)020<2038:SOECFE>2.0.CO;2Search in Google Scholar

[23] Dubrovsky E.B., Dubrovskaya V.A. & Berger E.M. 2004. Hormonal regulation and functional role of Drosophila E75A orphan nuclear receptor in the juvenile hormone signaling pathway. Dev. Biol. 268: 258–270. http://dx.doi.org/10.1016/j.ydbio.2004.01.00910.1016/j.ydbio.2004.01.009Search in Google Scholar

[24] Dunn A.M., Hogg J.C., Kelly A. & Hatcher M.J. 2005. Two cues for sex determination in Gammarus duebeni: Adaptive variation in environmental sex determination? Limnol. Oceanogr. 50: 346–353. http://dx.doi.org/10.4319/lo.2005.50.1.034610.4319/lo.2005.50.1.0346Search in Google Scholar

[25] Durica D.S., Wu X., Anilkumar G., Hopkins P.M. & Chung A.C.K. 2002. Characterization of crab EcR and RXR homologs and expression during limb regeneration and oocyte maturation. Mol. Cell. Endocrinol. 189: 59–76. http://dx.doi.org/10.1016/S0303-7207(01)00740-710.1016/S0303-7207(01)00740-7Search in Google Scholar

[26] Eads B.D., Andrews J. & Colbourne J.K. 2007. Ecological genomics in Daphnia: stress responses and environmental sex determination. Heredity. doi: 10.1038/sj.hdy.6800999. 10.1038/sj.hdy.6800999Search in Google Scholar

[27] Fingerman M. 1997. Roles of neurotransmitters in regulating reproductive hormone release and gonadal maturation inh decapod crustaceans. Invertebr. Reprod. Dev. 31: 47–54. 10.1080/07924259.1997.9672562Search in Google Scholar

[28] Flaherty C.M. & Dodson S.I. 2005. Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere 61: 200–207. http://dx.doi.org/10.1016/j.chemosphere.2005.02.01610.1016/j.chemosphere.2005.02.016Search in Google Scholar

[29] Ford A.T., Read P.A., Jones T.L., Michino F., Pang Y. & Fernandes T.F. 2007. An investigation into intersex amphipods and possible association with aquaculture. Mar. Environ. Res. 64: 443–455. http://dx.doi.org/10.1016/j.marenvres.2007.03.00610.1016/j.marenvres.2007.03.006Search in Google Scholar

[30] Ford A.T., Rodgers-Gray T.P., Davies I.M., Dunn A.M., Read P.A., Robinson C.D., Smith J.E. & Fernandes T.F. 2005. Abnormal gonadal morphology in intersex, Echinogammarus marinus (Amphipoda): a possible cause of reduced fecundity? Mar. Biol. 147: 913–918. http://dx.doi.org/10.1007/s00227-005-1601-110.1007/s00227-005-1601-1Search in Google Scholar

[31] Gagne F. & Blaise C. 2000. Organic alkali-labile phosphates in biological materials: A generic assay to detect vitellogenin in biological tissues. Environ. Toxicol. 15: 243–247. http://dx.doi.org/10.1002/1522-7278(2000)15:3<243::AID-TOX9>3.0.CO;2-D10.1002/1522-7278(2000)15:3<243::AID-TOX9>3.0.CO;2-DSearch in Google Scholar

[32] Ghekiere A., Fenske M., Verslycke T., Tyler C. & Janssen C.R. 2005. Development of quantitative enzyme-linked immunosorbent assay for vitellin in the mysid Neomysis integer (Crustacea: Mysidacea). Comp. Biochem. Physiol. A 142: 43–49. http://dx.doi.org/10.1016/j.cbpa.2005.07.00610.1016/j.cbpa.2005.07.006Search in Google Scholar

[33] Ginsburger-Vogel T. 1989. Determinism of paternally inherited sex ratio anomalies in the amphipod crustacean Orchestia gammarellus Pallas. Invertebr. Reprod. Dev. 16: 183–194. 10.1080/07924259.1989.9672076Search in Google Scholar

[34] Ginsburger-Vogel T. 1991. Intersexuality in Orchestia mediterranea Costa, 1853, and Orchestia aestuarensis Wildish, 1987 (Amphipoda): A consequence of hybridization or parasitic infestation? J. Crustac. Biol. 11: 530–539. http://dx.doi.org/10.2307/154852210.2307/1548522Search in Google Scholar

[35] Ginsburger-Vogel T. & Charniaux-Cotton H. 1982. Sex determination, pp. 257–281. In: Abele L.G. (ed.), The Biology of Crustacea — Embryology, Morphology and Genetics, Academic Press, New York, London, Paris, San Diego, San Francisco, Sao Paulo, Sydney, Tokyo, Toronto. Search in Google Scholar

[36] Hasegawa Y., Hirose E. & Katakura Y. 1993. Hormonal control of sexual differentiation and reproduction in crustacea. Am. Zool. 33: 403–411. 10.1093/icb/33.3.403Search in Google Scholar

[37] Hedgecock D., Tracey M.L. & Nelson K. 1982. Genetics, pp. 283–290. In: Abele L.G. (ed.), The Biology of Crustacea — Embryology, Morphology and Genetics, Academic Press, New York, London, Paris, San Diego, San Francisco, Sao Paulo, Syndey, Tokyo, Toronto. Search in Google Scholar

[38] Henry T.B., Kwon J.-W., Armbrust K.L. & Black M.C. 2004. Acute and chronic toxicity of five selective serotonin reuptake inhibitors in Ceriodaphnia dubia. Environ. Toxicol. Chem. 23: 2229–2233. http://dx.doi.org/10.1897/03-27810.1897/03-278Search in Google Scholar

[39] Huang D.-J., Wang S.-Y. & Chen H.-C. 2004. Effects of the endocrine disrupter chemicals chlordane and lindane on the male green neon shrimp (Neocaridina denticulata). Chemosphere 57: 1621–1627. http://dx.doi.org/10.1016/j.chemosphere.2004.08.06310.1016/j.chemosphere.2004.08.063Search in Google Scholar

[40] Hutchinson T.H. 2002. Reproductive and developmental effects of endocrine disrupters in invertebrates: in vitro and in vivo approaches. Toxicol. Lett. 131: 75–81. http://dx.doi.org/10.1016/S0378-4274(02)00046-210.1016/S0378-4274(02)00046-2Search in Google Scholar

[41] Hutchinson T.H., Pounds N.A., Hampel M. & Williams T.D. 1999a. Impact of natural and synthetic steroids on the survival, development and reproduction of marine copepods (Tisbe battagliai). Sci. Total Environ. 233: 167–179. http://dx.doi.org/10.1016/S0048-9697(99)00223-510.1016/S0048-9697(99)00223-5Search in Google Scholar

[42] Hutchinson T.H., Pounds N.A., Hampel M. & Williams T.D. 1999b. Life-cycle studies with marine copepods (Tisbe battagliai) exposed to 20-hydroxyecdysone and diethylstilbestrol. Environ. Toxicol. Chem. 18: 2914–2920. http://dx.doi.org/10.1897/1551-5028(1999)018<2914:LCSWMC>2.3.CO;210.1897/1551-5028(1999)018<2914:LCSWMC>2.3.CO;2Search in Google Scholar

[43] Innes D.J. 1997. Sexual reproduction of Daphnia pulex in a temporary habitat. Oecologia 111: 53–60. http://dx.doi.org/10.1007/s00442005020710.1007/s004420050207Search in Google Scholar

[44] James M.O. & Boyle S.M. 1998. Cytochromes P450 in crustacea. Comp. Biochem. Physiol. C 121: 157–172. 10.1016/S0742-8413(98)10036-1Search in Google Scholar

[45] Janer G., LeBlanc G.A. & Porte C. 2005. A comparative study on androgen metabolism in three invertebrate species. Gen. Comp. Endocrinol. 143: 211–221. http://dx.doi.org/10.1016/j.ygcen.2005.03.01610.1016/j.ygcen.2005.03.016Search in Google Scholar

[46] Jungmann D., Ladewig V., Ludwichowski K.U., Petzsch P. & Nagel R. 2004. Intersexuality in Gammarus fossarum Koch — A common inducible phenomenon? Arch. Hydrobiol. 159: 511–529. http://dx.doi.org/10.1127/0003-9136/2004/0159-051110.1127/0003-9136/2004/0159-0511Search in Google Scholar

[47] Katakura Y. 1989. Endocrine and genetic control of sex differentiation in the malacostracan crustacea. Invertebr. Reprod. Dev. 16: 177–182. 10.1080/07924259.1989.9672075Search in Google Scholar

[48] Katakura Y. & Hasegawa Y. 1983. Masculinization of females of the isopod crustacean, Armadillidium vulgare, following injections of an active extract of the androgenic gland. Gen. Comp. Endocrinol. 49: 57–62. http://dx.doi.org/10.1016/0016-6480(83)90007-210.1016/0016-6480(83)90007-2Search in Google Scholar

[49] Kim H.W., Chang E.S. & Mykles D.L. 2005a. Three calpains and ecdysone receptor in the land crab Gecarcinus lateralis: sequences, expression and effects of elevated ecdysteroid induced by eyestalk ablation. J. Exp. Biol. 208: 3177–3197. http://dx.doi.org/10.1242/jeb.0175410.1242/jeb.01754Search in Google Scholar PubMed

[50] Kim H.W., Lee S.G. & Mykles D.L. 2005b. Ecdysteroid-responsive genes, RXR and E75, in the tropical land crab, Gecarcinus lateralis: Differential tissue expression of multiple RXR isoforms generated at three alternative splicing sites in the hinge and ligand-binding domains. Mol. Cell. Endocrinol. 242: 80–95. http://dx.doi.org/10.1016/j.mce.2005.08.00110.1016/j.mce.2005.08.001Search in Google Scholar PubMed

[51] Köhler H.R., Kloas W., Schirling M., Lutz I., Reye A.L., Langen J.S., Triebskorn R., Nagel R. & Schonfelder G. 2007. Sex steroid receptor evolution and signalling in aquatic invertebrates. Ecotoxicology 16: 131–143. http://dx.doi.org/10.1007/s10646-006-0111-310.1007/s10646-006-0111-3Search in Google Scholar PubMed

[52] Kummerer K. 2004. Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks. 2nd ed., Springer Verlag, Heidelberg, Germany, 527 pp. Search in Google Scholar

[53] Kusk K.O. & Wollenberger L. 2007. Towards an internationally harmonized test method for reproductive and developmental effects of endocrine disrupters in marine copepods. Ecotoxicology 16: 183–195. http://dx.doi.org/10.1007/s10646-006-0112-210.1007/s10646-006-0112-2Search in Google Scholar PubMed

[54] Laufer H., Biggers W.J. & Ahl J.S.B. 1998. Stimulation of ovarian maturation in the crayfish Procambarus clarkii by methyl farnesoate. Gen. Comp. Endocrinol. 111: 113–118. http://dx.doi.org/10.1006/gcen.1998.710910.1006/gcen.1998.7109Search in Google Scholar PubMed

[55] LeBlanc G.A. 2007. Crustacean endocrine toxicology: a review. Ecotoxicology 16: 61–81. http://dx.doi.org/10.1007/s10646-006-0115-z10.1007/s10646-006-0115-zSearch in Google Scholar PubMed

[56] Lee F.-Y., Shih T.-W. & Chang C.-F. 1997. Isolation and characterization of the female-specific protein (vitellogenin) in mature female hemolymph of the freshwater prawn Macro-brachium rosenbergii: Comparison with ovarian vitellin. Gen. Comp. Endocrinol. 108: 406–415. http://dx.doi.org/10.1006/gcen.1997.698910.1006/gcen.1997.6989Search in Google Scholar PubMed

[57] Lecher P., Defaye D. & Noel P. 1995. Chromosomes and nuclear DNA of crustacea. Invertebr. Reprod. Dev. 27: 85–114. 10.1080/07924259.1995.9672440Search in Google Scholar

[58] Martins J., Riberio K., Rangel-Figueiredo T. & Coimbra J. 2007. Reproductive cycle, ovarian development, and vertebrate-type steroids profile in the freshwater prawn Macrobrachium rosenbergii. J. Crustac. Biol. 27: 220–228. http://dx.doi.org/10.1651/C-2597.110.1651/C-2597.1Search in Google Scholar

[59] McCabe J. & Dunn A.M. 1997. Adaptive significance of environmental sex determination in an amphipod. J. Evol. Biol. 10: 515–527. http://dx.doi.org/10.1007/s00036005003910.1007/s000360050039Search in Google Scholar

[60] McKenney C.L. 2005. The influence of insect juvenile hormone agonists on metamorphosis and reproduction in estuarine crustaceans. Integr. Comp. Biol. 45: 97–105. http://dx.doi.org/10.1093/icb/45.1.9710.1093/icb/45.1.97Search in Google Scholar

[61] McKenney C.L., Cripe G.M., Foss S.S., Tuberty S.R. & Hoglund M. 2004. Comparative embryonic and larval developmental responses of estuarine shrimp (Palaemonetes pugio) to the juvenile hormone agonist fenoxycarb. Arch. Environ. Contam. Toxicol. 47: 463–470. http://dx.doi.org/10.1007/s00244-002-0294-410.1007/s00244-002-0294-4Search in Google Scholar

[62] Medesani D.A., Greco L.S.L. & Rodriguez E.M. 2004. Interference of cadmium and copper with the endocrine control of ovarian growth in the estuarine crab Chasmagnathus granulata. Aquat. Toxicol. 69: 165–174. http://dx.doi.org/10.1016/j.aquatox.2004.05.00310.1016/j.aquatox.2004.05.003Search in Google Scholar

[63] Mu X. & LeBlanc G.A. 2002. Developmental toxicity of testosterone in the crustacean Daphnia magna involves anti-ecdysteroidal activity. Gen. Comp. Endocrinol. 129: 127–133. http://dx.doi.org/10.1016/S0016-6480(02)00518-X10.1016/S0016-6480(02)00518-XSearch in Google Scholar

[64] Mu X. & Leblanc G.A. 2004. Cross communication between signaling pathways: Juvenoid hormones modulate ecdysteroid activity in a crustacean. J. Exp. Zool. A — Comp. Exp. Biol. 301A: 793–801. http://dx.doi.org/10.1002/jez.a.10410.1002/jez.a.104Search in Google Scholar PubMed

[65] Nates S.F. & McKenney C.L. 2000. Growth, lipid class and fatty acid composition in juvenile mud crabs (Rhithropanopeus harrisii) following larval exposure to Fenoxycarb (R), insect juvenile hormone analog. Comp. Biochem. Physiol. C 127: 317–325. Search in Google Scholar

[66] Oberdörster E., Rice C.D. & Irwin L.K. 2000. Purification of vitellin from grass shrimp Palaemonetes pugio, generation of monoclonal antibodies, and validation for the detection of lipovitellin in Crustacea. Comp. Biochem. Physiol. C 127: 199–207. Search in Google Scholar

[67] Ohira T., Nishimura T., Sonobe H., Okuno A., Watanabe T., Nagasawa H., Kawazoe I. & Aida K. 1999. Expression of a recombinant molt-inhibiting hormone of the kuruma prawn Penaeus japonicus in Escherichia coli. Biosci. Biotechnol. Biochem. 63: 1576–1581. http://dx.doi.org/10.1271/bbb.63.157610.1271/bbb.63.1576Search in Google Scholar PubMed

[68] Okumura T. & Aida K. 2001. Effects of bilateral eyestalk ablation on molting and ovarian development in the giant freshwater prawn, Macrobrachium rosenbergii. Fish. Sci. 67: 1125–1135. http://dx.doi.org/10.1046/j.1444-2906.2001.00370.x10.1046/j.1444-2906.2001.00370.xSearch in Google Scholar

[69] Okumura T. & Hara M. 2004. Androgenic gland cell structure and spermatogenesis during the molt cycle and correlation to morphotypic differentiation in the giant freshwater prawn, Macrobrachium rosenbergii. Zool. Sci. 21: 621–628. http://dx.doi.org/10.2108/zsj.21.62110.2108/zsj.21.621Search in Google Scholar

[70] Okumura T. & Sakiyama K. 2004. Hemolymph levels of vertebrate-type steroid hormones in female kuruma prawn Marsupenaeus japonicus (Crustacea: Decapoda: Penaeidae) during natural reproductive cycle and induced ovarian development by eyestalk ablation. Fish. Sci. 70: 372–380. http://dx.doi.org/10.1111/j.1444-2906.2004.00816.x10.1111/j.1444-2906.2004.00816.xSearch in Google Scholar

[71] Okuno A., Hasegawa Y., Ohira T. & Nagasawa H. 2001. Immuno-logical identification of crustacean androgenic gland hormone, a glycopeptide. Peptides 22: 175–181. http://dx.doi.org/10.1016/S0196-9781(00)00374-010.1016/S0196-9781(00)00374-0Search in Google Scholar

[72] Olmstead A.W. & LeBlanc G.A. 2002. Juvenoid hormone methyl farnesoate is a sex determinant in the crustacean Daphnia magna. J. Exp. Zool. 293: 736–739. http://dx.doi.org/10.1002/jez.1016210.1002/jez.10162Search in Google Scholar

[73] Olmstead A.W. & LeBlanc G.A. 2007. The environmental-endocrine basis of gynandromorphism (intersex) in a crustacean. Int. J. Biol. Sci. 3: 77–84. 10.7150/ijbs.3.77Search in Google Scholar

[74] Peterson J.K., Kashian D.R. & Dodson S.I. 2001. Methoprene and 20-OH-ecdysone affect male production in Daphnia pulex. Environ. Toxicol. Chem. 20: 582–588. http://dx.doi.org/10.1897/1551-5028(2001)020<0582:MAOEAM>2.0.CO;210.1897/1551-5028(2001)020<0582:MAOEAM>2.0.CO;2Search in Google Scholar

[75] Rodriguez E.M., Greco L.S.L., Medesani D.A., Laufer H. & Fingerman M. 2002a. Effect of methyl farnesoate, alone and in combination with other hormones, on ovarian growth of the red swamp crayfish, Procambarus clarkii, during vitellogenesis. Gen. Comp. Endocrinol. 125: 34–40. http://dx.doi.org/10.1006/gcen.2001.772410.1006/gcen.2001.7724Search in Google Scholar

[76] Rodriguez E.M., Medesani D.A. & Fingerman M. 2007. Endocrine disruption in crustaceans due to pollutants: A review. Comp. Biochem. Physiol. A 146: 661–671. http://dx.doi.org/10.1016/j.cbpa.2006.04.03010.1016/j.cbpa.2006.04.030Search in Google Scholar

[77] Rodriguez E.M., Medesani D.A., Greco L.S.L. & Fingerman M. 2002b. Effects of some steroids and other compounds on ovarian growth of the red swamp crayfish, Procambarus clarkii, during early vitellogenesis. J. Exp. Zool. 292: 82–87. http://dx.doi.org/10.1002/jez.114410.1002/jez.1144Search in Google Scholar

[78] Sagi A., Manor R., Segall C., Davis C. & Khalaila I. 2002. On intersexuality in the crayfish Cherax quadricarinatus: an inducible sexual plasticity model. Invertebr. Reprod. Dev. 41: 27–33. 10.1080/07924259.2002.9652732Search in Google Scholar

[79] Sagi A., Shoukrun R., Khalaila I. & Rise M. 1996. Gonad maturation, morphological and physiological changes during the first reproductive cycle of the crayfish Cherax quadricarinatus female. Invertebr. Reprod. Dev. 29: 235–242. Search in Google Scholar

[80] Sanders M.B., Billinghurst Z., Depledge M.H. & Clare A.S. 2005. Larval development and vitellin-like protein expression in Palaemon elegans larvae following xeno-oestrogen exposure. Integr. Comp. Biol. 45: 51–60. http://dx.doi.org/10.1093/icb/45.1.5110.1093/icb/45.1.51Search in Google Scholar

[81] Sarojini R., Nagabhushanam R., Devi M. & Fingerman M. 1995a. Dopaminergic inhibition of 5-hydroxytryptamine-stimulated testicular maturation in the fiddler crab, Uca pugilator. Comp. Biochem. Physiol. C 111: 287–292. 10.1016/0742-8413(95)00051-OSearch in Google Scholar

[82] Sarojini R., Nagabhushanam R. & Fingerman M. 1995b. In vivo effects of dopamine and dopaminergic antagonists on testicular maturation in the red swamp crayfish, Procambarus clarkii. Biol. Bull. 189: 340–346. http://dx.doi.org/10.2307/154215110.2307/1542151Search in Google Scholar

[83] Sarojini R., Nagabhushanam R. & Fingerman M. 1997. An in vitro study of the inhibitory action of methionine enkephalin on ovarian maturation in the red swamp crayfish, Procambarus clarkii. Comp. Biochem. Physiol. C 117: 207–210. 10.1016/S0742-8413(97)00055-8Search in Google Scholar

[84] Siwicki K.K., Beltz B.S. & Kravitz E.A. 1987. Proctolin in identified serotonergic, dopaminergic, and cholinergic neurons in the lobster, Homarus americanus. J. Neurosci. 7: 522–532. Search in Google Scholar

[85] Schirling M., Jungmann D., Ladewig V., Ludwichowski K.-U., Nagel R., Köhler H.-R. & Triebskorn R. 2006. Bisphenol A in artificial indoor streams: II. Stress response and gonad histology in Gammarus fossarum (Amphipoda). Ecotoxicology 15: 143–156. http://dx.doi.org/10.1007/s10646-005-0044-210.1007/s10646-005-0044-2Search in Google Scholar

[86] Soroka Y., Sagi A., Khalaila I., Abdu U. & Milner Y. 2000. Changes in protein kinase C during vitellogenesis in the crayfish Cherax quadricarinatus — Possible activation by methyl farnesoate. Gen. Comp. Endocrinol. 118: 200–208. http://dx.doi.org/10.1006/gcen.2000.747110.1006/gcen.2000.7471Search in Google Scholar

[87] Spaziani E., Mattson M.P., Wang W.N.L. & McDougall H.E. 1999. Signaling pathways for ecdysteroid hormone synthesis in crustacean Y-organs. Am. Zool. 39: 496–512. 10.1093/icb/39.3.496Search in Google Scholar

[88] Stanton M.G. 1968. Colorimetric determination of inorganic phosphate in the presence of biological material and adenosine triphosphate. Anal. Biochem. 22: 27–34. http://dx.doi.org/10.1016/0003-2697(68)90255-810.1016/0003-2697(68)90255-8Search in Google Scholar

[89] Suzuki S. 1999. Androgenic gland hormone is a sex-reversing factor but cannot be a sex-determining factor in the female crustacean isopods Armadillidium vulgare. Gen. Comp. Endocrinol. 115: 370–378. http://dx.doi.org/10.1006/gcen.1999.732410.1006/gcen.1999.7324Search in Google Scholar PubMed

[90] Tangvuthipong P. & Damrongphol P. 2006. 5-Hydroxytryptamine enhances larval development of the giant freshwater prawn, Macrobrachium rosenbergii. Aquaculture 251: 567–572. http://dx.doi.org/10.1016/j.aquaculture.2005.06.01010.1016/j.aquaculture.2005.06.010Search in Google Scholar

[91] Tatarazako N. & Oda S. 2007. The water flea Daphnia magna (Crustacea, Cladocera) as a test species for screening and evaluation of chemicals with endocrine dirupting effects on crustaceans. Ecotoxicology 16: 197–203. http://dx.doi.org/10.1007/s10646-006-0120-210.1007/s10646-006-0120-2Search in Google Scholar

[92] Thornton J.W. 2004. Resurrecting ancient genes: experimental analysis of extinct molecules. Nature Rev. Genet. 5: 366–375. http://dx.doi.org/10.1038/nrg132410.1038/nrg1324Search in Google Scholar

[93] Thornton J.W., Need E. & Crews D. 2003. Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Sci. Total Environ. 301: 1714–1717. 10.1126/science.1086185Search in Google Scholar

[94] Tuberty S.R. & McKenney C.L. 2005. Ecdysteroid responses of estuarine crustaceans exposed through complete larval development to juvenile hormone agonist insecticides. Integr. Comp. Biol. 45: 106–117. http://dx.doi.org/10.1093/icb/45.1.10610.1093/icb/45.1.106Search in Google Scholar

[95] Vaca A.A. & Alfaro J. 2000. Ovarian maturation and spawning in the white shrimp, Penaeus vannamei, by serotonin injection. Aquaculture 182: 373–385. http://dx.doi.org/10.1016/S0044-8486(99)00267-710.1016/S0044-8486(99)00267-7Search in Google Scholar

[96] Verslycke T., De Wasch K., De Brabander H.F. & Janssen C.R. 2002. Testosterone metabolism in the estuarine mysid Neomysis integer (Crustacea; Mysidacea): Identification of testosterone metabolites and endogenous vertebrate-type steroids. Gen. Comp. Endocrinol. 126: 190–199. http://dx.doi.org/10.1006/gcen.2002.779310.1006/gcen.2002.7793Search in Google Scholar PubMed

[97] Verslycke T., Ghekiere A., Raimondo S. & Janssen C. 2007. Mysid crustaceans as test models for the screening and testing of endocrine-disrupting chemicals. Ecotoxicology 16: 205–219. http://dx.doi.org/10.1007/s10646-006-0122-010.1007/s10646-006-0122-0Search in Google Scholar PubMed

[98] Verslycke T., Poelmans S., De Wasch K., De Brabander H.F. & Janssen C.R. 2004. Testosterone and energy metabolism in the estuarine mysid Neomysis integer (Crustacea: Mysidacea) following exposure to endocrine disruptors. Environ. Toxicol. Chem. 23: 1289–1296. http://dx.doi.org/10.1897/03-33810.1897/03-338Search in Google Scholar PubMed

[99] Vethaak A.D., Rijs G.B.J., Schrap S.M., Ruiter H., Gerritsen A. & Lahr J. 2002. Estrogens and Xeno-Estrogens in the Aquatic Environment of the Netherlands. Occurrence, Potency and Biological Effects. Dutch National Institute of Inland Water Management and Waste Water Treatment (RIZA) & Dutch National Institute for Coastal and Marine Management (RIKZ), Lelystad, Den Haag, 293 pp. Search in Google Scholar

[100] Volz D.C. & Chandler G.T. 2004. An enzyme-linked immunosorbent assay for lipovitellin quantification in copepods: A screening tool for endocrine toxicity. Environ. Toxicol. Chem. 23: 298–305. http://dx.doi.org/10.1897/03-20010.1897/03-200Search in Google Scholar PubMed

[101] Volz D.C., Kawaguchi T. & Chandler G.T. 2002. Purification and characterization of the common yolk protein, vitellin, from the estuarine amphipod Leptocheirus plumulosus. Prep. Biochem. Biotechnol. 32: 103–116. http://dx.doi.org/10.1081/PB-12000412310.1081/PB-120004123Search in Google Scholar PubMed

[102] Watt P.J. 1994. Parental control of sex ratio in Gammarus duebeni an organism with environmental sex determination. J. Evol. Biol. 7: 177–187. http://dx.doi.org/10.1046/j.1420-9101.1994.7020177.x10.1046/j.1420-9101.1994.7020177.xSearch in Google Scholar

[103] Watts M.M., Pascoe D. & Carroll K. 2002. Population responses of the freshwater amphipod Gammarus pulex (L.) to an environmental estrogen, 17 alpha-ethinylestradiol. Environ. Toxicol. Chem. 21: 445–450. http://dx.doi.org/10.1897/1551-5028(2002)021<0445:PROTFA>2.0.CO;210.1897/1551-5028(2002)021<0445:PROTFA>2.0.CO;2Search in Google Scholar

[104] Withers P.C. 1992. Comparative Animal Physiology. Harcourt Brace Jovanovich College Publishers, Saunders College Publishing, Fort Worth, Philadelphia, San Diego, New York, Orlando, Austin, San Antonio, Toronto, Montreal, London, Sydney, Tokyo, 949 pp. Search in Google Scholar

[105] Wu X., Hopkins P.M., Palli S.R. & Durica D.S. 2004. Crustacean retinoid-X receptor isoforms: distinctive DNA binding and receptor-receptor interaction with a cognate ecdysteroid receptor. Mol. Cell. Endocrinol. 218: 21–38. http://dx.doi.org/10.1016/j.mce.2003.12.01310.1016/j.mce.2003.12.013Search in Google Scholar

[106] Yokota Y., Unuma T., Moriyama A. & Yamano K. 2003. Cleavage site of a major yolk protein (MYP) determined by cDNA isolation and amino acid sequencing in sea urchin, Hemicen-trotus pulcherrimus. Comp. Biochem. Physiol. B 135: 71–81. http://dx.doi.org/10.1016/S1096-4959(03)00084-810.1016/S1096-4959(03)00084-8Search in Google Scholar

[107] Zou E. 2005. Impacts of xenobiotics on crustacean molting: The invisible endocrine diruption. Integr. Comp. Biol. 45: 33–38. http://dx.doi.org/10.1093/icb/45.1.3310.1093/icb/45.1.33Search in Google Scholar

[108] Zou E. & Fingerman M. 1997. Synthetic estrogenic agents do not interfere with sex differentiation but do inhibit molting of the cladoceran Daphnia magna. Bull. Environ. Contam. Toxicol. 58: 596–602. http://dx.doi.org/10.1007/s00128990037610.1007/s001289900376Search in Google Scholar

[109] Zou E. & Fingerman M. 1999. Effects of estrogenic agents on chitiobiase activity in the epidermis and hepatopancreas of the fiddler crab, Uca pugilator. Ecotoxicol. Environ. Saf. 42: 185–190. http://dx.doi.org/10.1006/eesa.1998.174010.1006/eesa.1998.1740Search in Google Scholar

Published Online: 2008-3-27
Published in Print: 2008-4-1

© 2008 Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11756-008-0027-x/html
Scroll to top button