Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter February 20, 2009

Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere

  • Govindan Selvakumar EMAIL logo , Piyush Joshi , Sehar Nazim , Pankaj Mishra , Jaideep Bisht and Hari Gupta
From the journal Biologia

Abstract

Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude garlic rhizosphere from the Indian Himalayas, are reported here. The identity of the isolate was arrived on the basis of its biochemical features and sequencing of the 16S rRNA gene. The isolate grew and solubilized phosphate at temperatures ranging from 4 to 30°C. Besides solubilizing P it produced indole acetic acid (IAA) and hydrogen cyanide (HCN). Seed bacterization with the isolate significantly increased the percent germination, rate of germination, plant biomass and nutrient uptake of wheat seedlings. While Pseudomonas fragi is normally associated with the spoilage of dairy products stored at cold temperatures, this is an early report on the plant growth promoting ability of the bacterium.

[1] Ali Z., O’Hare W.T. & Theaker B.J. 2003. Detection of bacterial contaminated milk by means of a quartz crystal microbalance based electronic nose. J. Therm. Anal. Calorim. 71: 155–161. http://dx.doi.org/10.1023/A:102227441916610.1023/A:1022274419166Search in Google Scholar

[2] Alquati C., De Gioia L., Santarossa G., Alberghina L., Fantucci P. & Lotti M. 2002. The cold-active lipase of Pseudomonas fragi heterologous expression, biochemical characterization and molecular modeling. Eur. J. Biochem. 269: 3321–3328. http://dx.doi.org/10.1046/j.1432-1033.2002.03012.x10.1046/j.1432-1033.2002.03012.xSearch in Google Scholar

[3] Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410. 10.1016/S0022-2836(05)80360-2Search in Google Scholar

[4] Asea P.E.A., Kucey R.M.N. & Stewart J.W.B. 1988. Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol. Biochem. 20: 459–464. http://dx.doi.org/10.1016/0038-0717(88)90058-210.1016/0038-0717(88)90058-2Search in Google Scholar

[5] Atlas R.M. 1995. The Handbook of Microbiological Media for the Examination of Food. CRC Press, Boca Raton, 197 pp. Search in Google Scholar

[6] Bakker A.W. & Schipper B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol. Biochem. 19: 451–457. http://dx.doi.org/10.1016/0038-0717(87)90037-X10.1016/0038-0717(87)90037-XSearch in Google Scholar

[7] Chen Y.P., Rekha P.D., Arun A.B., Shen F.T., Lai W.A. & Young C.C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34: 33–41. http://dx.doi.org/10.1016/j.apsoil.2005.12.00210.1016/j.apsoil.2005.12.002Search in Google Scholar

[8] Chung H., Par M., Madhaiyan M., Seshadri S., Song J., Cho H. & Sa T. 2005. Isolation and characterization of phosphate solubilization bacteria from the rhizosphere of crop plant of Korea. Soil Biol. Biochem. 37: 1970–1974. http://dx.doi.org/10.1016/j.soilbio.2005.02.02510.1016/j.soilbio.2005.02.025Search in Google Scholar

[9] Collins C.H. & Lyne P.M. 1980. Microbiological Methods. Butterworth and Co., Ltd., London. Search in Google Scholar

[10] Di Simine C.D., Sayer J.A. & Gadd G.M. 1998. Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol. Fertil. Soils 28: 87–94. http://dx.doi.org/10.1007/s00374005046710.1007/s003740050467Search in Google Scholar

[11] Elliot L.F. & Lynch J.M. 1984. Pseudomonas as a factor in the growth of winter wheat (Triticum aestivum L.). Soil Biol. Biochem 16: 69–71. http://dx.doi.org/10.1016/0038-0717(84)90128-710.1016/0038-0717(84)90128-7Search in Google Scholar

[12] Fernandez L.A., Zalba P., Gomez M.A. & Sagardoy M.A. 2007. Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol. Fertil. Soils 43: 805–809. http://dx.doi.org/10.1007/s00374-007-0172-310.1007/s00374-007-0172-3Search in Google Scholar

[13] Gaind S. & Gaur A.C. 1991. Thermotolerent phosphate solubilizing microorganisms and their interaction with mung-bean. Plant Soil 133: 141–149. http://dx.doi.org/10.1007/BF0001190810.1007/BF00011908Search in Google Scholar

[14] Goldstein A. 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram negative bacteria. Biol. Agric. Hortic. 12: 185–193. 10.1080/01448765.1995.9754736Search in Google Scholar

[15] Gordon A.S. & Weber R.P. 1951. Colorimetric estimation of indole acetic acid. Plant Physiol. 26: 192–195. http://dx.doi.org/10.1104/pp.26.1.19210.1104/pp.26.1.192Search in Google Scholar PubMed PubMed Central

[16] Gulati A., Rahi P. & Vyas P. 2008. Characterization of phosphate-solubilizing fluorescent Pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr. Microbiol. 56: 73–79. http://dx.doi.org/10.1007/s00284-007-9042-310.1007/s00284-007-9042-3Search in Google Scholar PubMed

[17] Hameeda B., Rupela O.P. & Reddy G. 2006. Application of plant growth-promoting bacteria associated with composts and macrofauna for growth promotion of pearl millet (Pennisetum glaucum L.). Biol. Fertil. Soils 43: 221–227. http://dx.doi.org/10.1007/s00374-006-0098-110.1007/s00374-006-0098-1Search in Google Scholar

[18] Holland M.A. 1997. Occams razor applied to hormonology. Are cytokinins produced by plants? Plant Physiol. 115: 865–868. 10.1104/pp.115.3.865Search in Google Scholar PubMed PubMed Central

[19] Hosseini S.Z. & Jafari M. 2002. Investigation on effect of salinity stress on germination of three accessions of tall wheat grass (Agropyron elongatum). Paper No. 2289, 17th World Congress on Soil Science, 14–21 August 2002, Thailand. Search in Google Scholar

[20] Hwangbo H., Park R.D., Kim Y.W., Rim Y.S., Park K.H., Kim T.H., Suh J.S. & Kim K.Y. 2003. 2-Ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Curr. Microbiol. 47: 87–92. http://dx.doi.org/10.1007/s00284-002-3951-y10.1007/s00284-002-3951-ySearch in Google Scholar PubMed

[21] Jackson M.L. 1973. Soil Chemical Analysis. Prentice Hall, Ltd., New Delhi. Search in Google Scholar

[22] Jones D.L. & Darrah P.R. 1994. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166: 247–257. http://dx.doi.org/10.1007/BF0000833810.1007/BF00008338Search in Google Scholar

[23] Katiyar V. & Goel R. 2003. Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiol. Res. 158: 163–168. http://dx.doi.org/10.1078/0944-5013-0018810.1078/0944-5013-00188Search in Google Scholar PubMed

[24] Khalid A., Arshad M. & Zahir Z.A. 2004. Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 96: 473–480. http://dx.doi.org/10.1046/j.1365-2672.2003.02161.x10.1046/j.1365-2672.2003.02161.xSearch in Google Scholar PubMed

[25] Kim K.Y., Hwangbo H, Kim Y.W., Kim H.J., Park K.H., Kim Y.C. & Seoung K.Y. 2002.Organic acid production and phosphate solubilization by Enterobacter intermedium 60-2G. Korean J. Soil Sci. Fert. 35: 59–67. Search in Google Scholar

[26] Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120. http://dx.doi.org/10.1007/BF0173158110.1007/BF01731581Search in Google Scholar

[27] Kloepper J.W., McInroy J.A. & Bowen K.L. 1992. Comparative identification by fatty acid analysis of soil, rhizosphere and geocarposphere bacteria of peanut (Arachis hypogaea L.). Plant Soil 139: 85–90. http://dx.doi.org/10.1007/BF0001284510.1007/BF00012845Search in Google Scholar

[28] Kremer R.J. & Souissi T. 2001. Cyanide production by rhizobacteria and potential for suppression of wheat seedling growth. Curr. Microbiol. 43: 182–186. http://dx.doi.org/10.1007/s00284001028410.1007/s002840010284Search in Google Scholar

[29] Kumar S., Tamura K. & Nei M. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150–163. http://dx.doi.org/10.1093/bib/5.2.15010.1093/bib/5.2.150Search in Google Scholar

[30] Lambers H. 1982. Cyanide-resistant respiration: a non phosphorylating electron transport pathway acts as an energy over-flow. Physiol. Plant 55: 478–485. http://dx.doi.org/10.1111/j.1399-3054.1982.tb04530.x10.1111/j.1399-3054.1982.tb04530.xSearch in Google Scholar

[31] Lebert I., Begot C. & Lebert A. 1998. Growth of Pseudomonas fluorescens and Pseudomonas fragi in a meat medium as affected by pH (5.8–7.0), water activity (0.97–1.00) and temperature (7–25 °C). Int. J. Food Microbiol. 39: 53–60. http://dx.doi.org/10.1016/S0168-1605(97)00116-510.1016/S0168-1605(97)00116-5Search in Google Scholar

[32] Lifshitz R., Kloepper J.W., Kozlowski M., Simonson C., Carlson J., Tipping E.N. & Zaleska I. 1987. Growth promotion of canola (rape-seed) seedlings by a strain of Peudomonas putida under gnotobiotic conditions. Can. J. Microbiol. 8: 102–106. 10.1139/m87-068Search in Google Scholar

[33] Martin L., Velazquez E., Rivas R., Mateos P.F., Martinez-Molina E., Rodriguez-Barrueco C. & Peix A. 2003. Effect of inoculation with a strain of Pseudomonas fragi on the growth and phosphorus content of strawberry plants, pp. 309–315. In: Velazquez E. & Rodriguez-Barrueco C. (eds), First International Meeting on Microbial Phosphate Solubilization (19–22 July 2002, Salamanca, Spain), Springer, The Netherlands. 10.1007/978-1-4020-5765-6_49Search in Google Scholar

[34] Mehta S. & Nautiyal C.S. 2001. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr. Microbiol. 43: 51–56. http://dx.doi.org/10.1007/s00284001025910.1007/s002840010259Search in Google Scholar

[35] Murphy J.P. & Riley J.P. 1962. A modified single solution method for the determination of the phosphate in natural waters. Anal. Chim. Acta 27: 31–36. http://dx.doi.org/10.1016/S0003-2670(00)88444-510.1016/S0003-2670(00)88444-5Search in Google Scholar

[36] Musarrat J., Bano N. & Rao R.A.K. 2000. Isolation and characterization of 2,4-dichlorophenoxyacetic acid-catabolizing bacteria and their biodegradation efficiency in soil. World J. Microbiol. Biotechnol. 16: 495–497. http://dx.doi.org/10.1023/A:100894572032710.1023/A:1008945720327Search in Google Scholar

[37] Nakeeran S., Fernando W.G.D. & Siddiqui Z.A. 2005. Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases, pp. 257–296. In: Siddiqui Z.A. (ed.), PGPR Biocontrol and Biofertilization, Springer. 10.1007/1-4020-4152-7_10Search in Google Scholar

[38] Oehl F., Oberson A., Probst M., Fliessbach A., Roth H.R. & Frossard E. 2001. Kinetics of microbial phosphorus uptake in cultivated soils. Biol. Fertil. Soil 34: 31–41. http://dx.doi.org/10.1007/s00374010036210.1007/s003740100362Search in Google Scholar

[39] Olsen S.R. & Sommers L.E. 1982. Phosphorus, pp. 403–430. In: Page A.L., Miller A.L. & Keeney R.H. (eds), Methods of Soil Analysis, part 2, Chemical and Microbiological Properties. American Society of Agronomy, Madison, Wisconsin, USA. 10.2134/agronmonogr9.2.2ed.c24Search in Google Scholar

[40] Pal S.S. 1998. Interaction of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 198: 169–177. http://dx.doi.org/10.1023/A:100431881438510.1023/A:1004318814385Search in Google Scholar

[41] Pandey A. & Palni L.M.S. 1998. Isolation of Pseudomonas corrugata from Sikkim Himalayas. World J. Microbiol. Biotechnol. 14: 411–413. http://dx.doi.org/10.1023/A:100882551414810.1023/A:1008825514148Search in Google Scholar

[42] Pandey A., Trivedi P., Kumar B. & Palni L.M.S. 2006. Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian Central Himalaya. Curr. Microbiol. 53: 102–107. http://dx.doi.org/10.1007/s00284-006-4590-510.1007/s00284-006-4590-5Search in Google Scholar PubMed

[43] Peix A., Rivas R., Mateos P.F., Martinez-Molina E., Rodrigue Barrueco C. & Velazquez E. 2003. Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro. Int. J. Syst. Evol. Microbiol. 53: 2067–2072. http://dx.doi.org/10.1099/ijs.0.02703-010.1099/ijs.0.02703-0Search in Google Scholar PubMed

[44] Peix A., Rivas R., Santa-Regina I., Mateos P.F., Martinez-Molina E., Rodrigue Barrueco C. & Velazquez E. 2004. Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. Int. J. Syst. Evol. Microbiol. 54: 847–850. http://dx.doi.org/10.1099/ijs.0.02966-010.1099/ijs.0.02966-0Search in Google Scholar PubMed

[45] Saitou N. & Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425. Search in Google Scholar

[46] Sarniguet A., Lucas P., Lucas M. & Samson R. 1992. Soil conduciveness to take all of wheat: influence of the nitrogen fertilizers on the structure of populations of fluorescent pseudomonads. Plant Soil 145: 29–36. http://dx.doi.org/10.1007/BF0000953810.1007/BF00009538Search in Google Scholar

[47] Selvakumar G., Kundu S., Joshi P., Nazim S., Gupta A.D., Mishra P.K. & Gupta H.S. 2008. Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J. Microbiol. Biotechnol. 24: 955–960. http://dx.doi.org/10.1007/s11274-007-9558-510.1007/s11274-007-9558-5Search in Google Scholar

[48] Selvakumar G., Mohan M., Kundu S., Gupta A.D., Joshi P., Nazim S. & Gupta H.S. 2007. Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett. Appl. Microbiol. 46: 171–175. http://dx.doi.org/10.1111/j.1472-765X.2007.02282.x10.1111/j.1472-765X.2007.02282.xSearch in Google Scholar PubMed

[49] Shivaji S., Chaturvedi P., Reddy G.S.N. & Suresh K. 2005. Pedobacter himalayensis sp. nov., from Hamta glacier located in the Himalayan mountain range in India. Int. J. Syst. Evol. Microbiol. 55: 1083–1088. http://dx.doi.org/10.1099/ijs.0.63532-010.1099/ijs.0.63532-0Search in Google Scholar PubMed

[50] Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. & Higgins D.G. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876–4882. http://dx.doi.org/10.1093/nar/25.24.487610.1093/nar/25.24.4876Search in Google Scholar PubMed PubMed Central

[51] Trivedi P. & Sa T. 2008. Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at low temperatures. Curr. Microbiol. 56: 140–144. http://dx.doi.org/10.1007/s00284-007-9058-810.1007/s00284-007-9058-8Search in Google Scholar PubMed

[52] Vazquez P., Holguin G., Puente M.E., Lopez-Cortez A. & Bashan Y. 2000. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid costal lagoon. Biol. Fertil. Soil 30: 460–468. http://dx.doi.org/10.1007/s00374005002410.1007/s003740050024Search in Google Scholar

[53] Vega N.W.O. 2007. A review on beneficial effects of rhizosphere bacteria on soil nutrient availability and plant nutrient uptake. Revista Facultad Nacional de Agronomia, Medellin 60: 3621–3643. Search in Google Scholar

[54] Vessey J.K. 2004. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571–586. http://dx.doi.org/10.1023/A:102603721689310.1023/A:1026037216893Search in Google Scholar

[55] Weller D.M. 2002. Microbial population responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40: 309–348. http://dx.doi.org/10.1146/annurev.phyto.40.030402.11001010.1146/annurev.phyto.40.030402.110010Search in Google Scholar PubMed

Published Online: 2009-2-20
Published in Print: 2009-4-1

© 2009 Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11756-009-0041-7/html
Scroll to top button