Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter October 22, 2009

Biochemical characterization of a raw starch degrading α-amylase from the Indonesian marine bacterium Bacillus sp. ALSHL3

  • Keni Vidilaseris EMAIL logo , Karina Hidayat , Debbie Retnoningrum , Zeily Nurachman , Achmad Noer and Dessy Natalia
From the journal Biologia

Abstract

An Indonesian marine bacterial isolate, which belongs to genus of Bacillus sp. based on 16S rDNA analysis and was identified as Bacillus filicolonicus according to its morphology and physiology, produced a raw starch degrading α-amylase. The partially purified α-amylase using a maize starch affinity method exhibited an optimum pH and temperature of 6.0 and 60°C, respectively. The enzyme retained 72% of its activity in the presence of 1.5 M NaCl. Scanning electron micrographs showed that the α-amylase was capable of degrading starch granules of rice and maize. This α-amylase from Bacillus sp. ALSHL3 was classified as a saccharifying enzyme since its major final degradation product was glucose, maltose, and maltotriose.

[1] Abe A., Tonozuka T., Sakano Y. & Kamitori S. 2004. Complex structures of Thermoactinomyces vulgaris R-47 α-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. J. Mol. Biol. 335: 811–822. http://dx.doi.org/10.1016/j.jmb.2003.10.07810.1016/j.jmb.2003.10.078Search in Google Scholar

[2] Asgher M., Asad M.J., Rahman S.U. & Legge R.L. 2007. A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J. Food Eng. 79: 950–955. http://dx.doi.org/10.1016/j.jfoodeng.2005.12.05310.1016/j.jfoodeng.2005.12.053Search in Google Scholar

[3] Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 72: 248–254. http://dx.doi.org/10.1016/0003-2697(76)90527-310.1016/0003-2697(76)90527-3Search in Google Scholar

[4] Buchanan R.E., Gibbons N.E., Cowan S.T., Holt J.G., Liston J., Muray R.G.E., Niven C.F., Ravin A.W. & Stanier R.W. 1974. Bergey’s Manual of Determinative Bacteriology, 8th Edition. The Williams and Wilkins Company, Baltimore. Search in Google Scholar

[5] Cho H.Y., Kim Y.W., Kim T.J., Lee H.S., Kim D.Y., Kim J.W., Lee Y.W., Lee S.B. & Park K.H. 2000. Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2. Biochim. Biophys. Acta. 1478: 333–340. 10.1016/S0167-4838(00)00037-6Search in Google Scholar

[6] Demirkan E.S., Mikami B., Adachi M., Higasa T., Utsumi S. 2005. α-Amylase from B. amyloliquefaciens: purification, characterization, raw starch degradation and expression in E. coli. Process Biochem. 40: 2629–2636. http://dx.doi.org/10.1016/j.procbio.2004.08.01510.1016/j.procbio.2004.08.015Search in Google Scholar

[7] Fuwa H. 1954. A new method for microdetermination of amylase activity by the use of amylose as a substrate. J. Biochem. 21: 219–230. Search in Google Scholar

[8] Gupta R., Gigras P., Mohapatra H., Goswami V.K. & Chauhan B. 2003. Microbial α-amylases: a biotechnological perspective. Process Biochem. 38: 1599–1616. http://dx.doi.org/10.1016/S0032-9592(03)00053-010.1016/S0032-9592(03)00053-0Search in Google Scholar

[9] Hamilton L.M., Kelly C.T. & Fogarty W.M. 1998. Raw starch degradation by the non-raw starch-adsorbing bacterial α-amylase of Bacillus sp. IMD 434. Carbohydr. Res. 314: 251–257. http://dx.doi.org/10.1016/S0008-6215(98)00300-010.1016/S0008-6215(98)00300-0Search in Google Scholar

[10] Hayashida S., Teramoto Y. & Inoue T. 1988. Production and characteristics of raw potato starch digesting amylase from Bacillus subtilis 65. Appl. Environ. Microbiol. 54: 1516–1522. 10.1128/aem.54.6.1516-1522.1988Search in Google Scholar

[11] Ivanova V., Dobreva E. & Emanuilova E. 1993. Purification and characterization of thermostable α-amylase from Bacillus licheniformis. J. Biotechnol. 28: 277–289. http://dx.doi.org/10.1016/0168-1656(93)90176-N10.1016/0168-1656(93)90176-NSearch in Google Scholar

[12] Janecek S. & Sevcik J. 1999. The evolution of starch-binding domain. FEBS Lett. 456: 119–125. http://dx.doi.org/10.1016/S0014-5793(99)00919-910.1016/S0014-5793(99)00919-9Search in Google Scholar

[13] Kiran K.K. & Chandra T. S. 2008. Production of surfactant and detergent-stable, halophilic, and alkalitolerant α-amylase by a moderately halophilic Bacillus sp. strain TSCVKK. Appl. Microbiol. Biotechnol. 77: 1023–1031. http://dx.doi.org/10.1007/s00253-007-1250-z10.1007/s00253-007-1250-zSearch in Google Scholar

[14] Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriphage T4. Nature227: 680–68 http://dx.doi.org/10.1038/227680a010.1038/227680a0Search in Google Scholar

[15] Lo H.F., Lin L.L., Chiang W.Y., Chie M.C., Hsu W.H. & Chang C.T. 2002. Deletion analysis of the C-terminal region of the α-amylase of Bacillus sp. strain TS-23. Arch. Microbiol. 178: 115–123. http://dx.doi.org/10.1007/s00203-002-0431-510.1007/s00203-002-0431-5Search in Google Scholar

[16] MacGregor E.A., Janecek S. & Svensson B. 2001. Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim. Biophys. Acta 1546: 1–20. 10.1016/S0167-4838(00)00302-2Search in Google Scholar

[17] Machovic M. & Janecek S. 2006. The evolution of putative starch binding domains. FEBS Lett. 580: 6349–6356. http://dx.doi.org/10.1016/j.febslet.2006.10.04110.1016/j.febslet.2006.10.041Search in Google Scholar

[18] Malhotra R., Noorvez S.M. & Satyanarayana T. 2000. Production and partial characterization of thermostable and calcium independent α-amylase of an extreme thermophile Bacillus thermooleovorans NP54. Lett. Appl. Microbiol. 31: 378–384. http://dx.doi.org/10.1046/j.1472-765x.2000.00830.x10.1046/j.1472-765x.2000.00830.xSearch in Google Scholar

[19] Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426 428. 10.1021/ac60147a030Search in Google Scholar

[20] Mohapatra B.R., Banerjee U.C. & Bapuji M. 1998. Characterization of a fungal amylase from Mucor sp. associated with the marine sponge Spirastrella sp. J. Biotechnol. 60: 113–117. http://dx.doi.org/10.1016/S0168-1656(97)00197-110.1016/S0168-1656(97)00197-1Search in Google Scholar

[21] Najafi M.F., Deobagkar D. & Deobagkar D. 2005. Purification and characterization of an extracellular α-amylase from Bacillus subtilis AX20. Protein Expr. Purif. 41: 349–354. http://dx.doi.org/10.1016/j.pep.2005.02.01510.1016/j.pep.2005.02.015Search in Google Scholar PubMed

[22] Najafi M.F. & Kembhavi A. 2005. One step purification and characterization of an extracellular amylase from marine Vibrio sp. Enzyme Microb. Technol. 36: 535–539. http://dx.doi.org/10.1016/j.enzmictec.2004.11.01410.1016/j.enzmictec.2004.11.014Search in Google Scholar

[23] Robyt J.F. 1998. Essentials of Carbohydrate Chemistry. Springer, Boston, 399 pp. 10.1007/978-1-4612-1622-3Search in Google Scholar

[24] Sodhi H.K., Sharma K., Gupta J.K. & Soni S.K. 2005. Production of a thermostable amylase by solid-state fermentation and its synergistic use in the hydrolysis of malt strarch for alcohol production. Process Biochem. 40: 525–534. http://dx.doi.org/10.1016/j.procbio.2003.10.00810.1016/j.procbio.2003.10.008Search in Google Scholar

[25] Van der Maarel M.J.E.C., van der Veen B., Uitdehaag J.C.M., Leemhuis H. & Dijkhuizen L. 2002. Properties and application of starch converting enzymes of the amylase family. J. Biotechnol. 94: 137–155. http://dx.doi.org/10.1016/S0168-1656(01)00407-210.1016/S0168-1656(01)00407-2Search in Google Scholar

Published Online: 2009-10-22
Published in Print: 2009-12-1

© 2009 Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11756-009-0190-8/html
Scroll to top button