Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter August 23, 2012

Isolation and characterization of heavy metal tolerant Gram-positive bacteria with bioremedial properties from municipal waste rich soil of Kestopur canal (Kolkata), West Bengal, India

  • Kamala Gupta EMAIL logo , Chitrita Chatterjee and Bhaskar Gupta
From the journal Biologia

Abstract

The present study was conducted to determine the culturable bacterial profile from Kestopur canal (Kolkata, India) and analyze their heavy metal tolerance. In addition to daily sewage including solid and soluble wastes, a considerable load of toxic metals are released into this water body from industries, tanneries and agriculture, household as well as health sectors. Screening out microbes from such an environment was done keeping in mind their multifunctional application especially for bioremediation. Heavy metals are major environmental pollutants when present in high concentration in soil and show potential toxic effects on growth and development in plants and animals. Some edible herbs growing in the canal vicinity, and consumed by people, were found to harbour these heavy metals at sub-toxic levels. The bioconcentration factor of these plants being <1 indicates that they probably only absorb but not accumulate heavy metals. All the thirteen Grampositive bacteria isolated from these plants rhizosphere were found to tolerate high concentration of heavy metals like Co, Ni, Pb, Cr, Fe. Phylogenetic analysis of their 16S rDNA genes revealed that they belonged to one main taxonomic group — the Firmicutes. Seven of them were found to be novel with 92–95% sequence homology with known bacterial strains. Further microbiological analyses show that the alkaliphilic Bacillus weihenstephanensis strain IA1 and Exiguobacterium aestuarii strain CE1, with selective antibiotic sensitivity along with high Ni2+ and Cr6+ removal capabilities, respectively, can be prospective candidates for bioremediation.

[1] Abou-Shanab R.A., Angle J.S., Delorme T.A., Chaney R.L., Berkum V.P., Moawad H., Ghanem K. & Ghozlan H.A. 2003. Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol. 158: 219–224. http://dx.doi.org/10.1046/j.1469-8137.2003.00721.x10.1046/j.1469-8137.2003.00721.xSearch in Google Scholar

[2] Adarsh V.K., Mishra M., Chowdhury S., Sudarshan M., Thakur A.R. & Ray Chaudhuri S. 2007. Studies on metal microbe interaction of three bacterial isolates from east Calcutta wetland. Online J. Biol. Sci. 7: 80–88. http://dx.doi.org/10.3844/ojbsci.2007.80.8810.3844/ojbsci.2007.80.88Search in Google Scholar

[3] Alam M.Z. & Malik A. 2008. Chromate resistance, transport and bioreduction by Exiguobacterium sp. ZM-2 isolated from agricultural soil irrigated with tannery effluent. J. Basic Microbiol. 48: 416–420. http://dx.doi.org/10.1002/jobm.20080004610.1002/jobm.200800046Search in Google Scholar

[4] Aleem A., Isar J. & Malik A. 2003. Impact of long-term application of industrial wastewater on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizospheric soil. Bioresour. Technol. 86: 7–13. http://dx.doi.org/10.1016/S0960-8524(02)00134-710.1016/S0960-8524(02)00134-7Search in Google Scholar

[5] Al-Jassir M.S, Shaker A. & Khaliq M.A. 2005. Deposition of heavy metals on green leafy vegetables sold on roadsides of Riyadh city, Saudi Arabia. Bull. Environ. Contam. Toxicol. 75: 1020–1027. http://dx.doi.org/10.1007/s00128-005-0851-410.1007/s00128-005-0851-4Search in Google Scholar

[6] Al-Saleh I., Mustafa A., Dufour I., Taylor A. & Hiton R. 1996. Lead exposure in the city of Arar, Saudi Arabia. Arch. Environ. Health 51: 73–82. http://dx.doi.org/10.1080/00039896.1996.993599710.1080/00039896.1996.9935997Search in Google Scholar

[7] Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J Mol. Biol. 215: 403–410. 10.1016/S0022-2836(05)80360-2Search in Google Scholar

[8] Awashthi S.K. 2000. Prevention of Food Adulteration Act No. 37 of 1954. Central and State rules as amended for 1999, 3rd Edn, Ashoka Law House, New Delhi. Search in Google Scholar

[9] Benson D.A., Karsch-Mizrachi I., Clark K., Lipman D.J., Ostell J. & Sayers E.W. 2012. Nucleic Acids Res. 40 (Database Issue): D48–D53. http://dx.doi.org/10.1093/nar/gkr120210.1093/nar/gkr1202Search in Google Scholar PubMed PubMed Central

[10] Burd G.I, Dixon D.G. & Glick B.R. 1998. A plant growth promoting bacterium that decreases nickel toxicity in plant seedlings. Appl. Environ. Microbiol. 64: 3663–3668. 10.1128/AEM.64.10.3663-3668.1998Search in Google Scholar PubMed PubMed Central

[11] Chovanová K., Sládeková D., Kmeť V., Prokšová M., Harichová J., Puškárová A., Polek B. & Ferianc P. 2004. Identification and characterization of eight cadmium resistant bacterial isolates from a cadmium-contaminated sewage sludge. Biologia 59: 817–827 Search in Google Scholar

[12] Colak F., Atar N., Yazıcıoglu D. & Olgun A. 2011. Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance. Chem. Eng. J. 173: 422–428. http://dx.doi.org/10.1016/j.cej.2011.07.08410.1016/j.cej.2011.07.084Search in Google Scholar

[13] Congeevaram S., Dhanarani S., Park J., Michael D. & Kaliannan T. 2007. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J. Hazard. Mater. 146: 270–277. http://dx.doi.org/10.1016/j.jhazmat.2006.12.01710.1016/j.jhazmat.2006.12.017Search in Google Scholar

[14] Crapart S., Fardeau M.L., Cayol J.L., Thomas P., Sery C, Ollivier B. & Combet-Blanc Y. 2007. Exiguobacterium profundum sp nov. a moderately thermophilic, lactic acid-producing bacterium isolated from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 57: 287–292. http://dx.doi.org/10.1099/ijs.0.64639-010.1099/ijs.0.64639-0Search in Google Scholar

[15] Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791. http://dx.doi.org/10.2307/240867810.2307/2408678Search in Google Scholar

[16] Hasan S., Hashim M. A. & Gupta B.S. 2000. Adsorption of NiSO4 on Malaysian rubber-wood ash. Biores. Technol. 72: 153–158. http://dx.doi.org/10.1016/S0960-8524(99)00101-710.1016/S0960-8524(99)00101-7Search in Google Scholar

[17] Huang Y., Tao S. & Chen Y.J. 2005. The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil. J. Environ. Sci. 17: 276–280. Search in Google Scholar

[18] Islam E.U., Yang X., He Z. & Mahnmood Q. 2007. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crocks. J. Zhejiang Univ. Sci. 8: 1–13. 10.1631/jzus.2007.B0001Search in Google Scholar PubMed PubMed Central

[19] Kabata-Pendias A. & Pendias H. 1992. Trace Metals in Soils and Plants. CRC Press, Boca Raton, FL, 365 pp. Search in Google Scholar

[20] Karelová E., Harichová J., Stojnev T., Pangallo D.& Ferianc P. 2011. The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metalcontaminated site. Biologia 66: 18–26 http://dx.doi.org/10.2478/s11756-010-0145-010.2478/s11756-010-0145-0Search in Google Scholar

[21] Kashem M.A. & Singh B.R. 1999. Heavy metal contamination of soil and vegetation in the vicinity of industries in Bangladesh. Water Air Soil Pollut. 115: 347–361. http://dx.doi.org/10.1023/A:100519320731910.1023/A:1005193207319Search in Google Scholar

[22] Khairiah J., Zalifah M.K., Yin Y.H. & Aminah A. 2004. The uptake of heavy metals by fruit type vegetables grown in selected agricultural areas. Pak. J. Biol. Sci. 7: 1438–1442. http://dx.doi.org/10.3923/pjbs.2004.1438.144210.3923/pjbs.2004.1438.1442Search in Google Scholar

[23] Khan S., Cao Q., Zheng Y.M., Huang Y.Z. & Zhu Y.G. 2008. Health risk of heavy metals in contaminated soils and food crops irrigated with waste water in Beijing, China. Environ. Pollut. 152: 686–692. http://dx.doi.org/10.1016/j.envpol.2007.06.05610.1016/j.envpol.2007.06.056Search in Google Scholar PubMed

[24] Khan S., Hesham A.E.L., Qiao M., Rehman S. & He J.Z. 2010. Effect of Cd and Pb on soil microbial community structure and activities. Environ. Sci. Polut. Res. 17: 288–296. http://dx.doi.org/10.1007/s11356-009-0134-410.1007/s11356-009-0134-4Search in Google Scholar PubMed

[25] Khillare P.S., Balachandran S. & Meena B.R. 2004. Spatial and temporal variation of heavy metals in atmospheric aerosols of Delhi. Environ. Monit. Assess. 90: 1–21. http://dx.doi.org/10.1023/B:EMAS.0000003555.36394.1710.1023/B:EMAS.0000003555.36394.17Search in Google Scholar

[26] Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J. & Higgins D.G. 2007. ClustalW and ClustalX version 2 (2007). Bioinformatics 23: 2947–2948. http://dx.doi.org/10.1093/bioinformatics/btm40410.1093/bioinformatics/btm404Search in Google Scholar PubMed

[27] Leung W.C., Wong M.F., Chua H., Lo W., Yu P.H.F. & Leung C.K. 2000. Removal and recovery of heavy metals by bacteria isolated from activated sludge treating industrial effluents and municipal wastewater. Wat. Sci. Technol. 12: 233–240. 10.2166/wst.2000.0277Search in Google Scholar

[28] Malekzadeh F., Farazmand A., Ghafourian H., Shahamat M., Levin M. & Colwell R.R. 2002 Uranium accumulation by a bacterium isolated from electroplating effluent. World J. Microbiol. Biotechnol 18: 295–302. http://dx.doi.org/10.1023/A:101521571881010.1023/A:1015215718810Search in Google Scholar

[29] Mashauri D.A. & Mayo A. 1990. The environmental impact of industrial and domestic waste water in Dar Es Salaam, pp. 23–32. In: Khan M.R. & Gijzen H.J. (eds), Environmental Pollution and its Management in East Africa, University of Dar Es Salaam, Tanzania. Search in Google Scholar

[30] Mengoni A., Barzanti R., Gonnelli C., Gabbrielli R. & Bazzicalopo M. 2001. Characterization of nickel-resistant bacteria isolated from serpentine soil. Environ. Microbiol. 3: 691–698. http://dx.doi.org/10.1046/j.1462-2920.2001.00243.x10.1046/j.1462-2920.2001.00243.xSearch in Google Scholar PubMed

[31] Nandy P., Thakur A.R. & Ray Chaudhuri S. 2007. Characterization of bacterial strains isolated through microbial profiling of urine samples. Online J. Biol. Sci. 7: 44–51. http://dx.doi.org/10.3844/ojbsci.2007.44.5110.3844/ojbsci.2007.44.51Search in Google Scholar

[32] Othman O.C. 2001. Heavy metals in green vegetables and soils from vegetable gardens in Dar es Salaam, Tanzania. Tanzania J. Sci. Assoc. Crop Sci. 27: 37–48. Search in Google Scholar

[33] Radwan M.A. & Salama A.K. 2006. Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food Chem. Toxicol. 44: 1273–1278. http://dx.doi.org/10.1016/j.fct.2006.02.00410.1016/j.fct.2006.02.004Search in Google Scholar PubMed

[34] Rajkumar M., Nagendran R., Lee K.J., Lee W.H. & Kim S.Z. 2006. Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere 62: 741–748. http://dx.doi.org/10.1016/j.chemosphere.2005.04.11710.1016/j.chemosphere.2005.04.117Search in Google Scholar PubMed

[35] Saitou N. & Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425. Search in Google Scholar

[36] Sharma R.K., Agrawal M. & Marshall F.M. 2008. Heavy metal (Cu, Zn, Cd and Pb) contamination of vegetables in urban India: a case study in Varanasi. Environ. Pollut. 154: 254–263. http://dx.doi.org/10.1016/j.envpol.2007.10.01010.1016/j.envpol.2007.10.010Search in Google Scholar PubMed

[37] Sherameti I. & Varma A. 2011. Detoxification of Heavy Metals, Series: Soil Biology, Vol. 30. Springer-Verlag, 448 pp. 10.1007/978-3-642-21408-0Search in Google Scholar

[38] Smith S.R. 1994. Effect of soil pH on availability to crops of metals in sewage sludge treated soils. I. Nickel, copper and zinc uptake and toxicity to ryegrass. Environ. Pollut. 85: 321–327. http://dx.doi.org/10.1016/0269-7491(94)90054-X10.1016/0269-7491(94)90054-XSearch in Google Scholar

[39] Spain A. 2003. Implications of microbial heavy metal resistance in the environment. Review Undergrad. Res. 2: 1–6. Search in Google Scholar

[40] Tamura K., Nei M. & Kumar S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 101: 11030–11035. http://dx.doi.org/10.1073/pnas.040420610110.1073/pnas.0404206101Search in Google Scholar

[41] Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739. http://dx.doi.org/10.1093/molbev/msr12110.1093/molbev/msr121Search in Google Scholar

[42] Tian-Wei T., Hu B. & Haijia S. 2004. Adsorption of Ni2+ on amine-modified mycelium of Penicillium chrysogenum. Enzyme Microb. Technol. 35: 508–513. http://dx.doi.org/10.1016/j.enzmictec.2004.08.03510.1016/j.enzmictec.2004.08.035Search in Google Scholar

[43] Vishnivetskaya A.T., Kathariou S. & Tiedje J.M. 2009. The Exiguobacterium genus: biodiversity and biogeography. Extremophiles 13: 541–555. http://dx.doi.org/10.1007/s00792-009-0243-510.1007/s00792-009-0243-5Search in Google Scholar

[44] Vivas A., Biro B., Nemeth T., Barea J.M. & Azcon R. 2006. Nickel tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biol. Biochem. 38: 2694–2704. http://dx.doi.org/10.1016/j.soilbio.2006.04.02010.1016/j.soilbio.2006.04.020Search in Google Scholar

[45] Waalkes M.P. & Rehm S. 1994. Cadmium and prostate cancer. J. Toxicol. Environ. Health 43: 251–269. http://dx.doi.org/10.1080/1528739940953192010.1080/15287399409531920Search in Google Scholar

[46] Wang X.L., Sato T., Xing B.S. & Tao S. 2005. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ. 350: 28–37. http://dx.doi.org/10.1016/j.scitotenv.2004.09.04410.1016/j.scitotenv.2004.09.044Search in Google Scholar

[47] Wong C.S.C., Li X.D., Zhang G., Qi S.H. & Peng X.Z. 2003. Atmospheric depositions of heavy metals in the Pearl River Delta, China. Atmos. Environ. 37: 767–776. http://dx.doi.org/10.1016/S1352-2310(02)00929-910.1016/S1352-2310(02)00929-9Search in Google Scholar

[48] Yan G. & Viraraghavan T. 2003. Heavy metal removal from aqueous solution by fungus Mucor rouxii. Water Res. 37: 4486–4496. http://dx.doi.org/10.1016/S0043-1354(03)00409-310.1016/S0043-1354(03)00409-3Search in Google Scholar

[49] Yilmaz E.I. 2003. Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Res. Microbiol. 154: 409–415. http://dx.doi.org/10.1016/S0923-2508(03)00116-510.1016/S0923-2508(03)00116-5Search in Google Scholar

[50] Zayed A., Gowthaman S. & Terry N. 1998. Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J. Environ. Qual. 27: 715–721. http://dx.doi.org/10.2134/jeq1998.00472425002700030032x10.2134/jeq1998.00472425002700030032xSearch in Google Scholar

[51] Zhang Z., Schwartz S., Wagner L. & Miller W. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7: 203–214. http://dx.doi.org/10.1089/1066527005008147810.1089/10665270050081478Search in Google Scholar PubMed

[52] Zurera-Cosano G., Moreno-Rojas R., Salmeron-Egea J. & Pozo Lora R. 1989. Heavy metal uptake from greenhouse border soils for edible vegetables. J. Sci. Food Agric. 49: 307–314. http://dx.doi.org/10.1002/jsfa.274049030710.1002/jsfa.2740490307Search in Google Scholar

Published Online: 2012-8-23
Published in Print: 2012-10-1

© 2012 Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11756-012-0099-5/html
Scroll to top button