Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter April 13, 2013

Reactive oxygen species and seed germination

  • Marcelo Gomes EMAIL logo and Queila Garcia
From the journal Biologia

Abstract

Reactive oxygen species (ROS) are continuously produced by the metabolically active cells of seeds, and apparently play important roles in biological processes such as germination and dormancy. Germination and ROS accumulation appear to be linked, and seed germination success may be closely associated with internal ROS contents and the activities of ROS-scavenging systems. Although ROS were long considered hazardous molecules, their functions as cell signaling compounds are now well established and widely studied in plants. In seeds, ROS have important roles in endosperm weakening, the mobilization of seed reserves, protection against pathogens, and programmed cell death. ROS may also function as messengers or transmitters of environmental cues during seed germination. Little is currently known, however, about ROS biochemistry or their functions or the signaling pathways during these processes, which are to be considered in the present review.

[1] Ahmad P., Sarwat M. & Sharma S. 2008. Reactive oxygen species, antioxidants and signaling in plants. J. Plant Biol. 51: 167–173. http://dx.doi.org/10.1007/BF0303069410.1007/BF03030694Search in Google Scholar

[2] Bailly C. 2004 Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 14: 93–107. http://dx.doi.org/10.1079/SSR200415910.1079/SSR2004159Search in Google Scholar

[3] Bailly C., Audigier C., Ladonne F., Wagner M.H., Coste F., Corbineau F. & Côme D. 2001. Changes in oligosaccharide content and antioxidant enzyme activities in developing bean seeds as re-lated to acquisition of drying tolerance and seed quality. J. Exp. Bot. 52: 701–708. 10.1093/jexbot/52.357.701Search in Google Scholar PubMed

[4] Bailly C., Benamar A., Corbineau F. & Côme D. 1996. Changes in superoxide dismutase, catalase and glutathione reductase activities as related to seed deterioration during accelerated aging of sun-flower seeds. Physiol. Plant. 97: 104–110. http://dx.doi.org/10.1111/j.1399-3054.1996.tb00485.x10.1111/j.1399-3054.1996.tb00485.xSearch in Google Scholar

[5] Bailly C., El-Maarouf-Bouteau H. & Corbineau F. 2008. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C. R. Biologies 331: 806–814. 2008 http://dx.doi.org/10.1016/j.crvi.2008.07.02210.1016/j.crvi.2008.07.022Search in Google Scholar PubMed

[6] Bailly C. & Kranner I. 2011. Methods for analyses of reactive oxygen species and antioxidants in relation to seed longevity and germination. Methods Mol. Biol. 773: 343–367. http://dx.doi.org/10.1007/978-1-61779-231-1_2010.1007/978-1-61779-231-1_20Search in Google Scholar PubMed

[7] Barba-Espín G., Diaz-Vivancos P., Job D., Belghazi M., Job C. & Hernandes J.A. 2011. Understanding the role of H2O2 during pea seed germination: a combined proteomic and hormone profiling approach. Plant Cell Environ. 34: 1907–1919. http://dx.doi.org/10.1111/j.1365-3040.2011.02386.x10.1111/j.1365-3040.2011.02386.xSearch in Google Scholar PubMed

[8] Bazin J., Langlade N., Vincourt P., Arribat S., Balzergue S., El-Maarouf-Bouteau H. & Bailly C.. 2011. Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening. Plant Cell 23: 2196–2208 http://dx.doi.org/10.1105/tpc.111.08669410.1105/tpc.111.086694Search in Google Scholar PubMed PubMed Central

[9] Buetler T.M., Krauskopf A. & Ruegg U.T. 2004. Role of superoxide as a signaling molecule. News Physiol. Sci. 19: 120–123. 10.1152/nips.01514.2003Search in Google Scholar PubMed

[10] Carol R.J. & Dolan L. 2006. The role of reactive oxygen species in cell growth: Lessons from root hairs. J. Exp. Bot. 57: 1829–1834. http://dx.doi.org/10.1093/jxb/erj20110.1093/jxb/erj201Search in Google Scholar PubMed

[11] Côme D. & Corbineau F. 1996. Metabolic damage related to desiccation sensitivity, pp. 107–120. In: Ouédrago A.S.S., Poulsen K. & Stubsgaard, F. (eds), Intermediate/Recalcitrant Tropical Forest Tree Seeds. IP-GRI, Roma. Search in Google Scholar

[12] Corbineau F., Gay-Mathieu C., Vinel D. & Côme D. 2002. Decrease in sunflower (Helianthus annuus L.) seed viability caused by high temperature as related to energy metabolism, membrane damage and lipid composition. Physiol. Plant. 116: 489–496. http://dx.doi.org/10.1034/j.1399-3054.2002.1160407.x10.1034/j.1399-3054.2002.1160407.xSearch in Google Scholar

[13] Dat J., Vandenabeele S., Vranová E., Van Montagu M., Inzé D. & Van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 57: 779–795. http://dx.doi.org/10.1007/s00018005004110.1007/s000180050041Search in Google Scholar

[14] del Río L.A., Sandalio L.M., Corpas F.J., Palma J.M. & Barroso J.B. 2006. Reactive oxygen species and reactive nitrogen species in peroxisomes: production, scavenging, and role in cell signaling. Plant Physiol. 141: 330–335. http://dx.doi.org/10.1104/pp.106.07820410.1104/pp.106.078204Search in Google Scholar

[15] Desikan R., Hancock J.T., Coffey M.J. & Neill N.J. 1996. Generation of active oxygen in elicited cells of Arabidopsis thaliana is mediated by a NADPH oxidase-like enzyme. FEBS Lett. 382: 213–217. http://dx.doi.org/10.1016/0014-5793(96)00177-910.1016/0014-5793(96)00177-9Search in Google Scholar

[16] Doke N., Miura Y., Sanchez L.M. & Kawakita K. 1994. Involvement of superoxide in signal transduction: responses to attack by pathogens, physical and chemical shocks and UV irradiation, pp. 177–218. In: Foyer C.H. & Mullineaux P. (eds), Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, Boca Raton, CRC Press. 10.1201/9781351070454-7Search in Google Scholar

[17] El-Maarouf-Bouteau H. & Bailly C. 2008. Oxidative signaling in seed germination and dormancy. Plant Signal. Behav. 3: 175–182. http://dx.doi.org/10.4161/psb.3.3.553910.4161/psb.3.3.5539Search in Google Scholar PubMed PubMed Central

[18] Fath A., Bethke P., Beligni V. & Jones R. 2002. Active oxygen and cell death in cereal aleurone cells. J. Exp. Bot. 53: 1273–82. http://dx.doi.org/10.1093/jexbot/53.372.127310.1093/jexbot/53.372.1273Search in Google Scholar

[19] Farrant J.M., Bailly C., Leymarie J., Hamman B., Côme D. & Corbineau F. 2004. Wheat seedlings as a model to understand desiccation tolerance and sensitivity. Physiol. Plant. 120: 563–574. http://dx.doi.org/10.1111/j.0031-9317.2004.0281.x10.1111/j.0031-9317.2004.0281.xSearch in Google Scholar PubMed

[20] Finch-Savage W.E., Cadman C.S.C., Toorop P.E., Lynn J.R. & Hilhorst H.W.M. 2007. Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. Plant J. 51: 60–78. http://dx.doi.org/10.1111/j.1365-313X.2007.03118.x10.1111/j.1365-313X.2007.03118.xSearch in Google Scholar PubMed

[21] Foyer C. & Noctor G. 2009. Redox regulation in photosynthetic organisms: signaling, acclimation and practical implications. Antioxid. Redox Signal. 11: 861–905. http://dx.doi.org/10.1089/ars.2008.217710.1089/ars.2008.2177Search in Google Scholar PubMed

[22] Gapper C. & Dolan L. 2006. Control of plant development by reactive oxygen species. Plant Physiol. 141: 341–345. http://dx.doi.org/10.1104/pp.106.07907910.1104/pp.106.079079Search in Google Scholar PubMed PubMed Central

[23] Gill S.S. & Tuteta N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48: 909–930. http://dx.doi.org/10.1016/j.plaphy.2010.08.01610.1016/j.plaphy.2010.08.016Search in Google Scholar PubMed

[24] Gomes M.P., Carneiro M.M.L.C, Nogueira C.O.G., Soares A.M. & Garcia Q.S. 2012. The system modulating ROS content in germinating seeds of two Brazilian savanna tree species exposed to As and Zn. Acta Physiol. Plant. DOI: 10.1007/s11738-012-1140-6 10.1007/s11738-012-1140-6Search in Google Scholar

[25] Grant J.J. & Loake G.J. 2000. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol. 124: 21–29. http://dx.doi.org/10.1104/pp.124.1.2110.1104/pp.124.1.21Search in Google Scholar PubMed PubMed Central

[26] Jabs T., Dietrich R.A. & Dangl J.L. 1996. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 27: 1853–1856. http://dx.doi.org/10.1126/science.273.5283.185310.1126/science.273.5283.1853Search in Google Scholar PubMed

[27] Job C., Laugel S., Duval M., Gallardo K. & Job D. 2001. Biochemical characterization of atypical biotinylation domains in seed proteins. Seed Sci. Res. 11: 149–16. Search in Google Scholar

[28] Job C., Rajjou L., Lovigny Y., Belghazi M. & Job D. 2005. Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol. 138: 790–802. http://dx.doi.org/10.1104/pp.105.06277810.1104/pp.105.062778Search in Google Scholar PubMed PubMed Central

[29] Karpinski S., Reynolds H., Karpinska B., Wingsle G., Creis-sen G. & Mullineaux P. 1999. Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284: 654–657. http://dx.doi.org/10.1126/science.284.5414.65410.1126/science.284.5414.654Search in Google Scholar PubMed

[30] Kermode A.R. & Finch-Savage B.E. 2002. Desiccation sensitivity in orthodox and recalcitrant seeds in relation to development, pp 149–184. In: Black M. & Pritchard H.W. (eds), Desiccation and Survival in Plants: Drying without Dying, CABI Publishing, Wallingford. http://dx.doi.org/10.1079/9780851995342.014910.1079/9780851995342.0149Search in Google Scholar

[31] Kovtun Y., Chiu W.L., Tena G. & Sheen J. 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. USA 97: 2940–2945. http://dx.doi.org/10.1073/pnas.97.6.294010.1073/pnas.97.6.2940Search in Google Scholar PubMed PubMed Central

[32] Kranner I. & Colville L.E. 2011. Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environ. Exp. Bot. 72: 93–105. http://dx.doi.org/10.1016/j.envexpbot.2010.05.00510.1016/j.envexpbot.2010.05.005Search in Google Scholar

[33] Kruger N.J. & von Schaewen A. 2003. The oxidative pentose phosphate pathway: structure and organization. Curr. Opin. Plant Biol. 6: 236–246. http://dx.doi.org/10.1016/S1369-5266(03)00039-610.1016/S1369-5266(03)00039-6Search in Google Scholar

[34] Laloi C., Apel K. & Danon A. 2004. Reactive oxygen signalling: the latest news. Curr. Opin. Plant Biol. 7: 323–328. http://dx.doi.org/10.1016/j.pbi.2004.03.00510.1016/j.pbi.2004.03.005Search in Google Scholar

[35] Lefevre I., Marchal G., Correal E., Zanuzzi A. & Lutts S. 2009. Variation in response to heavy metals during vegetative growth in Dorycnium pentaphyllum Scop. Plant Growth Regul. 59: 1–11. http://dx.doi.org/10.1007/s10725-009-9382-z10.1007/s10725-009-9382-zSearch in Google Scholar

[36] Lehner A., Bailly C., Flechel B., Poels P., Côme D. & Corbineau F. 2006. Changes in wheat seed germination ability, soluble carbohydrate and antioxidant enzyme activities in the embryo during the desiccation phase of maturation. J. Cereal Sci. 43: 175–182. http://dx.doi.org/10.1016/j.jcs.2005.07.00510.1016/j.jcs.2005.07.005Search in Google Scholar

[37] Levine A., Tenhaken R., Dixon R. & Lamb C. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593. http://dx.doi.org/10.1016/0092-8674(94)90544-410.1016/0092-8674(94)90544-4Search in Google Scholar

[38] Leymarie J., Vitkauskaité G., Hoang H.H., Gendreau E., Chazoule V., Meimoun P., Corbineau F., El-Maarouf-Bouteau H. & Bailly C. 2012. Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. Plant Cell Physiol. 53: 96–106. http://dx.doi.org/10.1093/pcp/pcr12910.1093/pcp/pcr129Search in Google Scholar

[39] Liszkay A., van der Zalm E. & Schopfer P. 2004. Production of reactive oxygen intermediates (O (2)(•−), H(2)O(2), and (·)OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol. 136: 3114–3123. http://dx.doi.org/10.1104/pp.104.04478410.1104/pp.104.044784Search in Google Scholar

[40] McDonald M.B. 1999. Seed deterioration: physiology, repair and assessment. Seed Sci. Tech. 27: 177–237. Search in Google Scholar

[41] Miller G., Shulaev, V. & Mittler R. 2008. Reactive oxygen signaling and abiotic stress. Physiol. Plant. 133: 481–489. http://dx.doi.org/10.1111/j.1399-3054.2008.01090.x10.1111/j.1399-3054.2008.01090.xSearch in Google Scholar

[42] Mou Z., Fan, W.H. & Dong X.N. 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113: 935–944. http://dx.doi.org/10.1016/S0092-8674(03)00429-X10.1016/S0092-8674(03)00429-XSearch in Google Scholar

[43] Müller K., Carstens A.C., Linkies A., Torres M.A. & Leubner-Metzger G. 2009. The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. New Phytol. 184: 885–897. http://dx.doi.org/10.1111/j.1469-8137.2009.03005.x10.1111/j.1469-8137.2009.03005.xSearch in Google Scholar PubMed

[44] Munné-Bosch S., Ońate M., Oliveira P.G. & Garcia Q.S.2011. Changes in phytohormones and oxidative stress markers in buried seeds of Vellozia alata. Flora 206: 704–711. http://dx.doi.org/10.1016/j.flora.2010.11.01210.1016/j.flora.2010.11.012Search in Google Scholar

[45] Neill S., Desikan R. & Hancock J. 2002. Hydrogen peroxide signalling. Curr. Opin. Plant Biol. 5: 388–395. http://dx.doi.org/10.1016/S1369-5266(02)00282-010.1016/S1369-5266(02)00282-0Search in Google Scholar

[46] Noctor G., De Paepe R. & Foyer C.H. 2007. Mitochondrial redox biology and homeostasis in plants. Trends Plant. Sci. 12: 125–134. http://dx.doi.org/10.1016/j.tplants.2007.01.00510.1016/j.tplants.2007.01.005Search in Google Scholar PubMed

[47] Oracz K., El-Maarouf-Bouteau H., Kranner I., Bogatek R., Corbineau F. & Bailly C. 2009. The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol. 150: 494–505. http://dx.doi.org/10.1104/pp.109.13810710.1104/pp.109.138107Search in Google Scholar PubMed PubMed Central

[48] Oracz K., El-Maarouf-Bouteau H., Farrant J.M., Cooper K., Belghazi M., Job C., Job D., Corbineau F. & Bailly C. 2007. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J. 50: 452–465. http://dx.doi.org/10.1111/j.1365-313X.2007.03063.x10.1111/j.1365-313X.2007.03063.xSearch in Google Scholar PubMed

[49] Pergo E.M. & Ishii-Iwamoto E.L. 2011. Changes in energy metabolism and antioxidant defense systems during seed germination of the weed species Ipomoea triloba L. and the responses to allelochemicals. J. Chem. Ecol. 37: 500–513. http://dx.doi.org/10.1007/s10886-011-9945-010.1007/s10886-011-9945-0Search in Google Scholar PubMed

[50] Prasad T.K., Anderson M.D., Martin B.A. & Stewart C.R. 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6: 65–74. 10.1105/tpc.6.1.65Search in Google Scholar PubMed PubMed Central

[51] Pukacka S. & Ratajczak E. 2007. Age-related biochemical changes during storage of beech (Fagus sylvatica L.) seeds. Seed Sci. Res. 17: 45–53. http://dx.doi.org/10.1017/S096025850762943210.1017/S0960258507629432Search in Google Scholar

[52] Puntarulo S., Sanchez R.A. & Boveris A. 1988. Hydrogen peroxide metabolism in soybean embryonic axes at the onset of germination. Plant Physiol. 86: 626–30. http://dx.doi.org/10.1104/pp.86.2.62610.1104/pp.86.2.626Search in Google Scholar PubMed PubMed Central

[53] Rajjou L., Lovigny Y., Groot S.P.C., Belghazi M., Job C. & Job D. 2008. Proteome-wide characterization of seed aging in Arabidopsis: A comparison between artificial and natural aging protocols. Plant Physiol 148: 620–641. http://dx.doi.org/10.1104/pp.108.12314110.1104/pp.108.123141Search in Google Scholar PubMed PubMed Central

[54] Rajjou L. Duval M., Gallardo K., Catusse J., Bally J., Job C. & Job D. 2012. Seed germination and vigor. Annu. Rev. Plant Biol. 63: 507–533. http://dx.doi.org/10.1146/annurev-arplant-042811-10555010.1146/annurev-arplant-042811-105550Search in Google Scholar

[55] Rhoads D.M., Umbach A.L., Subbaiah C.C. & Siedow J.N. 2006. Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol. 141: 357–366. 10.1104/pp.106.079129Search in Google Scholar

[56] Rodriguez-Serrano M., Romero-Puertas M.C., Pazmino D.M., Testillano P.S., Risueno M.C., del Rio L.A. & Sandalio L.M. 2009. Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol. 150: 229–243. http://dx.doi.org/10.1104/pp.108.13152410.1104/pp.108.131524Search in Google Scholar

[57] Schweikert C., Liszkay A. & Schopfer P. 2002. Polysaccharide degradation by Fenton reaction- or peroxidase-generated hydroxyl radicals in isolated plant cell walls. Phytochem. 61: 31–35. http://dx.doi.org/10.1016/S0031-9422(02)00183-810.1016/S0031-9422(02)00183-8Search in Google Scholar

[58] Sharma I. 2012. Arsenic induced oxidative stress in plants. Biologia 67: 447–453. http://dx.doi.org/10.2478/s11756-012-0024-y10.2478/s11756-012-0024-ySearch in Google Scholar

[59] Shetty N.P., Jørgensen H.J.L., Jensen J.D., Collinge D.B. & Shetty H.S. 2008. Roles of reactive oxygen species in interactions between plants and pathogens. Eur. J. Plant Pathol. 121: 267–280. http://dx.doi.org/10.1007/s10658-008-9302-510.1007/s10658-008-9302-5Search in Google Scholar

[60] Sun W.K. & Leopold A.C. 1995. The Maillard reaction and oxidative stress during aging of soybean seeds. Physiol. Plant. 94: 94–104. http://dx.doi.org/10.1111/j.1399-3054.1995.tb00789.x10.1111/j.1399-3054.1995.tb00789.xSearch in Google Scholar

[61] Tanou G., Job C., Belghazi M., Molassiotis A. & Job D. 2010. Proteomic signatures uncover hydrogen peroxide and nitric oxide in cross-talk signaling network in citrus plants. J. Proteome Res. 9: 5994–6006. http://dx.doi.org/10.1021/pr100782h10.1021/pr100782hSearch in Google Scholar

[62] Van Breusegem F., Vranová E., Dat J.F. & Inzé D. 2001. The role of active oxygen species in plant signal transduction. Plant Sci. 161: 405–414. http://dx.doi.org/10.1016/S0168-9452(01)00452-610.1016/S0168-9452(01)00452-6Search in Google Scholar

[63] Vertucci C.W. & Farrant J.M. 1995. Acquisition and loss of desiccation tolerance, pp. 237–271. In: Kigel J. & Galili G. (eds), Seed Development and Germination, Marcel Dekker, New York. 10.1201/9780203740071-10Search in Google Scholar

[64] Wisniewski J.P., Cornille P., Agnel J.P. & Montillet J.L. 1999. The extensin multigene family responds differentially to superoxide or hydrogen peroxide in tomato cell cultures. — FEBS Lett. 447: 264–268. http://dx.doi.org/10.1016/S0014-5793(99)00315-410.1016/S0014-5793(99)00315-4Search in Google Scholar

[65] Xu H.N., Li K.Z., Yang F.J., Shi Q. & Wang X. 2010. Overexpression of CsNMAPK in tobacco enhanced seed germination under salt and osmotic stresses. Mol. Biol. Rep. 37: 3157–3163. http://dx.doi.org/10.1007/s11033-009-9895-610.1007/s11033-009-9895-6Search in Google Scholar PubMed

Published Online: 2013-4-13
Published in Print: 2013-6-1

© 2013 Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11756-013-0161-y/html
Scroll to top button