Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter June 13, 2013

Evolutionary transition from C3 to C4 photosynthesis and the route to C4 rice

  • Zheng Liu EMAIL logo , Ning Sun , Shangjun Yang , Yanhong Zhao , Xiaoqin Wang , Xingyu Hao and Zhijun Qiao
From the journal Biologia

Abstract

Compared with C3 plants, C4 plants possess a mechanism to concentrate CO2 around the ribulose-1,5-bisphosphate carboxylase/oxygenase in chloroplasts of bundle sheath cells so that the carboxylation reaction work at a much more efficient rate, thereby substantially eliminate the oxygenation reaction and the resulting photorespiration. It is observed that C4 photosynthesis is more efficient than C3 photosynthesis under conditions of low atmospheric CO2, heat, drought and salinity, suggesting that these factors are the important drivers to promote C4 evolution. Although C4 evolution took over 66 times independently, it is hypothesized that it shared the following evolutionary trajectory: 1) gene duplication followed by neofunctionalization; 2) anatomical and ultrastructral changes of leaf architecture to improve the hydraulic systems; 3) establishment of two-celled photorespiratory pump; 4) addition of transport system; 5) co-option of the duplicated genes into C4 pathway and adaptive changes of C4 enzymes. Based on our current understanding on C4 evolution, several strategies for engineering C4 rice have been proposed to increase both photosynthetic efficiency and yield significantly in order to avoid international food crisis in the future, especially in the developing countries. Here we summarize the latest progresses on the studies of C4 evolution and discuss the strategies to introduce two-celled C4 pathway into rice.

[1] Ache P., Bauer H., Kollist H., Al-Rasheid K.A.S., Lautner S., Hartung W. & Hedrich R. 2010. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements. Plant J. 62: 1072–1082. 10.1111/j.1365-313X.2010.04213.xSearch in Google Scholar PubMed

[2] Ali S. & Taylor W.C. 2001. Quantitative regulation of the Flaveria Me1 gene is controlled by the 3′-untranslated region and sequences near the amino terminus. Plant Mol. Biol. 46: 251–261. http://dx.doi.org/10.1023/A:101068450900810.1023/A:1010684509008Search in Google Scholar

[3] Bauwe H. 2010. Photorespiration — the bridge to C4 photosynthesis, pp. 81–108. In: Raghavendra A.S & Sage R.F. (eds), C4 Photosynthesis and Related CO2 Concentrating Mechanisms, Springer Verlag, Berlin. http://dx.doi.org/10.1007/978-90-481-9407-0_610.1007/978-90-481-9407-0_6Search in Google Scholar

[4] Berry J.O., Breiding D.E. & Klessig D.F. 1990. Light-mediated control of translational initiation of ribulose-1,5-bisphosphate carboxylase in amaranth cotyledons. Plant Cell. 2: 795–803. Search in Google Scholar

[5] Bläsing O.E., Westhoff P. & Svensson P. 2000. Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria, a conserved serine residue in the carboxyl-terminal part of the enzyme is a major determinant for C4-specific characteristics. J. Biol. Chem. 275: 27917–27923. Search in Google Scholar

[6] Bräutigam A., Hoffmann-Benning S. & Weber A.P. 2008. Comparative proteomics of chloroplast envelopes from C3 and C4 plants reveals specific adaptations of the plastid envelope to C4 photosynthesis and candidate proteins required for maintaining C4 metabolite fluxes. Plant Physiol. 148: 568–579. Erratum. Plant Physiol. 148: 1734. http://dx.doi.org/10.1104/pp.108.12101210.1104/pp.108.121012Search in Google Scholar PubMed PubMed Central

[7] Bräutigam A. & Weber A.P. 2011. Do metabolite transport processes limit photosynthesis? Plant Physiol. 155: 43–48. http://dx.doi.org/10.1104/pp.110.16497010.1104/pp.110.164970Search in Google Scholar PubMed PubMed Central

[8] Bräutigam A., Kajala K., Wullenweber J., Sommer M., Gagneul D., Weber K.L., Carr K.M., Gowik U., Mass J., Lercher M.J., Westhoff P., Hibberd J.M. & Weber A.P. 2011. An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species. Plant Physiol. 155: 142–156. http://dx.doi.org/10.1104/pp.110.15944210.1104/pp.110.159442Search in Google Scholar PubMed PubMed Central

[9] Brown R.H. 1999. Agronomic implications of C4 photosynthesis, pp. 473–507. In: Sage R.F. & Monson R.K. (eds), C4 plant biology, Academic Press, San Diego. http://dx.doi.org/10.1016/B978-012614440-6/50015-X10.1016/B978-012614440-6/50015-XSearch in Google Scholar

[10] Brown N.J., Newell C.A., Stanley S., Chen J.E., Perrin A.J., Kajala K. & Hibberd J.M. 2011. Independent and parallel recruitment of preexisting mechanisms underlying C4 photosynthesis. Science 331: 1436–1439. http://dx.doi.org/10.1126/science.120124810.1126/science.1201248Search in Google Scholar PubMed

[11] Cegelski L. & Schaefer J. 2006. NMR determination of photorespiration in intact leaves using in vivo 13CO2 labeling. J. Magn. Reson. 178: 1–10. http://dx.doi.org/10.1016/j.jmr.2005.10.01010.1016/j.jmr.2005.10.010Search in Google Scholar PubMed

[12] Cerling T.E., Harris J.M., MacFadden B.J., Leakey M.G., Quade J., Eisenmann V. & Ehleringer J.R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389: 153–158. http://dx.doi.org/10.1038/3822910.1038/38229Search in Google Scholar

[13] Chang Y.M., Liu W.Y., Shih A.C., Shen M.N., Lu C.H., Lu M.Y., Yang H.W., Wang T.Y., Chen S.C., Chen S.M., Li W.H. & Ku M.S. 2012. Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. Plant Physiol. 160: 165–177. http://dx.doi.org/10.1104/pp.112.20381010.1104/pp.112.203810Search in Google Scholar PubMed PubMed Central

[14] Chastain C.J., Failing C.J., Manandhar L., Zimmerman M.A., Lakner M.M. & Nguyen T.H. 2011. Functional evolution of C4 pyruvate, orthophosphate dikinase. J. Exp. Bot. 62: 3083–3091. http://dx.doi.org/10.1093/jxb/err05810.1093/jxb/err058Search in Google Scholar PubMed

[15] Cheng S.H., Moore B.D., Edwards G.E. & Ku M.S.B. 1988. Photosynthesis in Flaveria brownii, a C4-like species. Plant Physiol. 87: 867–873. http://dx.doi.org/10.1104/pp.87.4.86710.1104/pp.87.4.867Search in Google Scholar PubMed PubMed Central

[16] Christin P.A., Besnard G., Samaritani E., Duvall M.R., Hodkinson T.R., Savolainen V. & Salamin N. 2008. Oligocene CO2 decline promoted C4 photosynthesis in grasses. Curr. Biol. 18: 37–43. http://dx.doi.org/10.1016/j.cub.2007.11.05810.1016/j.cub.2007.11.058Search in Google Scholar PubMed

[17] Christin P.A. & Besnard G. 2009. Two independent C4 origins in Aristidoideae (Poaceae) revealed by the recruitment of distinct phosphoenolpyruvate carboxylase genes. Am. J. Bot. 96: 2234–2239. http://dx.doi.org/10.3732/ajb.090011110.3732/ajb.0900111Search in Google Scholar PubMed

[18] Christin P.A., Freckleton R.P. & Osborne C.P. 2010. Can phylogenetics identify C4 origins and reversals? Trends Ecol. Evol. 6: 95–99. 10.1016/j.tree.2010.04.007Search in Google Scholar PubMed

[19] Christin P.A., Osborne C.P., Sage R.F., Arakaki M. & Edwards E.J. 2011. C4 eudicots are not younger than C4 monocots. J. Exp. Bot. 62: 3171–3181. http://dx.doi.org/10.1093/jxb/err04110.1093/jxb/err041Search in Google Scholar PubMed

[20] Cowling S.A. & Sage R.F. 1998. Interactive effects of low atmospheric CO2 and elevated temperature on growth, photosynthesis and respiration in Phaseolus vulgaris. Plant Cell Environ. 21: 427–435. http://dx.doi.org/10.1046/j.1365-3040.1998.00290.x10.1046/j.1365-3040.1998.00290.xSearch in Google Scholar

[21] Danker T., Dreesen B., Offermann S., Horst I. & Peterhansel C. 2008. Developmental information but not promoter activity controls the methylation state of histone H3 lysine 4 on two photosynthetic genes in maize. Plant J. 53: 465–474. http://dx.doi.org/10.1111/j.1365-313X.2007.03352.x10.1111/j.1365-313X.2007.03352.xSearch in Google Scholar PubMed

[22] Detarsio E., Alvarez C.E., Saigo M., Andreo C.S. & Drincovich M.F. 2007. Identification of domains involved in tetramerization and malate inhibition of maize C4-NADP-malic enzyme. J. Biol. Chem. 282: 6053–6060. http://dx.doi.org/10.1074/jbc.M60943620010.1074/jbc.M609436200Search in Google Scholar PubMed

[23] Edwards E.J., Osborne C.P., Strömberg C.A., Smith S.A., C4 Grasses Consortium., Bond W.J., Christin P.A., Cousins A.B., Duvall M.R., Fox D.L., Freckleton R.P., Ghannoum O., Hartwell J., Huang Y., Janis C.M., Keeley J.E., Kellogg E.A., Knapp A.K., Leakey A.D., Nelson D.M., Saarela J.M., Sage R.F., Sala O.E., Salamin N., Still C.J. & Tipple B. 2010. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science. 328: 587–591. http://dx.doi.org/10.1126/science.117721610.1126/science.1177216Search in Google Scholar PubMed

[24] Edwards G.E. & Voznesenskaya E.V. 2011. C4 photosynthesis: Kranz forms and single-cell C4 in terrestrial plants, pp. 29–61. In: Raghavendra A.S. & Sage R.F. (eds), C4 Photosynthesis and Related CO2 Concentrating Mechanisms, Springer, Dordrecht. 10.1007/978-90-481-9407-0_4Search in Google Scholar

[25] Ehleringer J.R. & Monson R.K. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Syst. 24: 411–439. http://dx.doi.org/10.1146/annurev.es.24.110193.00221110.1146/annurev.es.24.110193.002211Search in Google Scholar

[26] Ehleringer J.R., Cerling T.E. & Helliker B.R. 1997. C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112: 285–299. http://dx.doi.org/10.1007/s00442005031110.1007/s004420050311Search in Google Scholar PubMed

[27] Ehleringer J.R. 2005. The influence of atmospheric CO2, temperature, and water on the abudance of C3/C4 taxa, pp. 214–231. In: Ehleringer J.R., Cerling T.E. & Dearing M.D. (eds), A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. Ecological Studies, Vol 177. Springer, New York. http://dx.doi.org/10.1007/0-387-27048-5_1010.1007/0-387-27048-5_10Search in Google Scholar

[28] Friso G., Majeran W., Huang M., Sun Q. & van Wijk K.J. 2010. Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly. Plant Physiol. 152: 1219–1250. http://dx.doi.org/10.1104/pp.109.15269410.1104/pp.109.152694Search in Google Scholar PubMed PubMed Central

[29] Fukayama H., Tsuchida H., Agarie S., Nomura M., Onodera H., Ono K., Lee B.H., Hirose S., Toki S., Ku M.S.B., Makino A., Matsuoka M. & Miyao M. 2001. Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C3 plant, rice. Plant Physiol. 127: 1136–1146. http://dx.doi.org/10.1104/pp.01064110.1104/pp.010641Search in Google Scholar

[30] Fukayama H., Hatch M.D., Tamai T., Tsuchida H., Sudoh S., Furbank R.T. & Miyao M. 2003. Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants. Photosynth. Res. 77: 227–239. http://dx.doi.org/10.1023/A:102586143188610.1023/A:1025861431886Search in Google Scholar

[31] Furumoto T., Yamaguchi T., Ohshima-Ichie Y., Nakamura M., Tsuchida-Iwata Y., Shimamura M., Ohnishi J., Hata S., Gowik U., Westhoff P., Bräutigam A., Weber A.P. & Izui K. 2011. A plastidial sodium-dependent pyruvate transporter. Nature 476: 472–475. http://dx.doi.org/10.1038/nature1025010.1038/nature10250Search in Google Scholar PubMed

[32] Gowik U., Burscheidt J., Akyildiz M., Schlue U., Koczor M., Streubel M. & Westhoff P. 2004. cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell 16: 1077–1090. http://dx.doi.org/10.1105/tpc.01972910.1105/tpc.019729Search in Google Scholar PubMed PubMed Central

[33] Gowik U. & Westhoff P. 2011. The path from C3 to C4 photosynthesis. Plant Physiol. 155: 56–63. http://dx.doi.org/10.1104/pp.110.16530810.1104/pp.110.165308Search in Google Scholar PubMed PubMed Central

[34] Gowik U., Brautigam A., Weber K.L., Weber A.P. & Westhoff P. 2011. Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4? Plant Cell 23: 2087–2105. http://dx.doi.org/10.1105/tpc.111.08626410.1105/tpc.111.086264Search in Google Scholar PubMed PubMed Central

[35] Griffiths H., Weller G., Toy L.F. & Dennis R.J. 2013. You’re so vein: bundle sheath physiology, phylogeny and evolution in C3 and C4 plants. Plant Cell Environ. 36: 249–261. http://dx.doi.org/10.1111/j.1365-3040.2012.02585.x10.1111/j.1365-3040.2012.02585.xSearch in Google Scholar PubMed

[36] Hibberd J.M. & Covshoff S. 2010. The regulation of gene expression required for C4 photosynthesis. Annu. Rev. Plant Biol. 61: 181–207. http://dx.doi.org/10.1146/annurev-arplant-042809-11223810.1146/annurev-arplant-042809-112238Search in Google Scholar PubMed

[37] Horst I., Offermann S., Dreesen B., Niessen M. & Peterhansel C. 2009. Core promoter acetylation is not required for high transcription from the phosphoenolpyruvate carboxylase promoter in maize. Epigenet Chromatin 2: 17. http://dx.doi.org/10.1186/1756-8935-2-1710.1186/1756-8935-2-17Search in Google Scholar PubMed PubMed Central

[38] Jacobs B., Engelmann S., Westhoff P., Gowik U. 2008. Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria: determinants for high tolerance towards the inhibitor L-malate. Plant Cell Environ. 31: 793–803. http://dx.doi.org/10.1111/j.1365-3040.2008.01796.x10.1111/j.1365-3040.2008.01796.xSearch in Google Scholar PubMed

[39] Kajala K., Covshoff S., Karki S., Woodfield H., Tolley B.J., Dionora M.J.A., Mogul R.T., Mabilangan A.E., Danila F.R., Hibberd J.M. & Quick W.P. 2011. Strategies for engineering a two-celled C4 photosynthetic pathway into rice. J. Exp. Bot. 62: 3001–3010. http://dx.doi.org/10.1093/jxb/err02210.1093/jxb/err022Search in Google Scholar PubMed

[40] Kajala K., Brown N.J., Williams B.P., Borrill P., Taylor L.E. & Hibberd J.M. 2012. Multiple Arabidopsis genes primed for recruitment into C4 photosynthesis. Plant J. 69: 47–56. http://dx.doi.org/10.1111/j.1365-313X.2011.04769.x10.1111/j.1365-313X.2011.04769.xSearch in Google Scholar PubMed

[41] Kapralov M.V., Kubien D.S., Andersson I. & Filatov D.A. 2011. Changes in Rubisco kinetics during the evolution of C4 photosynthesis in Flaveria (Asteraceae) are associated with positive selection on genes encoding the enzyme. Mol. Biol. Evol. 28: 1491–503. http://dx.doi.org/10.1093/molbev/msq33510.1093/molbev/msq335Search in Google Scholar PubMed

[42] Kausch A.P., Owen T.P., Zachwieja S.J., Flynn A.R. & Sheen J. 2001. Mesophyll-specific, light and metabolic regulation of the C4PPCZm1 promoter in transgenic maize. Plant Mol. Biol. 45: 1–15. http://dx.doi.org/10.1023/A:100648732653310.1023/A:1006487326533Search in Google Scholar

[43] Ku M.S.B., Monson R.K., Littlejohn R.O., Nakamoto H., Fisher D.B. & Edwards G.E. 1983. Photosynthetic characteristics of C3-C4 intermediate Flaveria species: I. Leaf anatomy, photosynthetic responses to O2 and CO2, and activities of key enzymes in the C3 and C4 pathways. Plant Physiol. 71: 944–948. http://dx.doi.org/10.1104/pp.71.4.94410.1104/pp.71.4.944Search in Google Scholar

[44] Ku M.S.B., Wu J.R., Dai Z.Y., Scott R.A., Chu C. & Edwards G.E. 1991. Photosynthetic and photorespiratory characteristics of Flaveria species. Plant Physiol. 96: 518–528. http://dx.doi.org/10.1104/pp.96.2.51810.1104/pp.96.2.518Search in Google Scholar

[45] Ku M.S.B., Agarie S., Nomura M., Fukayama H., Tsuchida H., Ono K., Hirose S., Toki S., Miyao M. & Matsuoka M. 1999. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat. Biotechnol. 17: 76–80. http://dx.doi.org/10.1038/525610.1038/5256Search in Google Scholar

[46] Lai L.B., Wang L. & Nelson T.M. 2002. Distinct but conserved functions for two chloroplasticNADP-malic enzyme isoforms in C3 and C4Flaveria species. Plant Physiol. 128: 125–39. http://dx.doi.org/10.1104/pp.01044810.1104/pp.010448Search in Google Scholar

[47] Langdale J.A. & Nelson T. 1991. Spatial regulation of photosynthetic development in C4 plants. Trends Genet. 7: 191–196. 10.1016/0168-9525(91)90435-SSearch in Google Scholar

[48] Langdale J.A., Taylor W.C. & Nelson T. 1991. Cell-specific accumulation of maize phosphoenolpyruvate carboxylase is correlated with demethylation at a specific site greater than 3 kb upstream of the gene. Mol. Gen. Genet. 225: 49–55. http://dx.doi.org/10.1007/BF0028264110.1007/BF00282641Search in Google Scholar PubMed

[49] Langdale J.A. 2011. C4 cycle: past, present, and future research on C4 photosynthesis. Plant Cell 23: 3879–3892. http://dx.doi.org/10.1105/tpc.111.09209810.1105/tpc.111.092098Search in Google Scholar PubMed PubMed Central

[50] Li J., Gong X., Lin H., Song Q., Chen J. & Wang X. 2005. DGP1, a drought-induced guard cell-specific promoter and its function analysis in tobacco plants. Sci. China C. Life Sci. 48: 181–186. Search in Google Scholar

[51] Li P., Ponnala L., Gandotra N., Wang L., Si Y., Tausta S.L., Kebrom T.H., Provart N., Patel R., Myers C.R., Reidel E.J., Turgeon R., Liu P., Sun Q., Nelson T. & Brutnell T.P. 2010. The developmental dynamics of the maize leaf transcriptome. Nat Genet. 42: 1060–1067. http://dx.doi.org/10.1038/ng.70310.1038/ng.703Search in Google Scholar PubMed

[52] Liu Z. & Sun N. 2013. Enhancing photosynthetic CO2 use efficiency in rice: approaches and challenges. Acta Physiol Plant. 35: 1001–1009. http://dx.doi.org/10.1007/s11738-012-1171-z10.1007/s11738-012-1171-zSearch in Google Scholar

[53] Ludwig M. 2012. Carbonic anhydrase and the molecular evolution of C4 photosynthesis. Plant Cell Environ. 35: 22–37. http://dx.doi.org/10.1111/j.1365-3040.2011.02364.x10.1111/j.1365-3040.2011.02364.xSearch in Google Scholar PubMed

[54] Majeran W., Cai Y., Sun Q. & van Wijk K.J. 2005. Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17: 3111–3140. http://dx.doi.org/10.1105/tpc.105.03551910.1105/tpc.105.035519Search in Google Scholar PubMed PubMed Central

[55] Majeran W., Zybailov B., Ytterberg A.J., Dunsmore J., Sun Q. & van Wijk K.J. 2008. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol. Cell Proteomics 7: 1609–1638. http://dx.doi.org/10.1074/mcp.M800016-MCP20010.1074/mcp.M800016-MCP200Search in Google Scholar PubMed PubMed Central

[56] Majeran W., Friso G., Ponnala L., Connolly B., Huang M., Reidel E., Zhang C., Asakura Y., Bhuiyan N.H., Sun Q., Turgeon R. & van Wijk K.J. 2010. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. Plant Cell 22: 3509–3542. http://dx.doi.org/10.1105/tpc.110.07976410.1105/tpc.110.079764Search in Google Scholar PubMed PubMed Central

[57] Marshall J.S., Stubbs J.D., Chitty J.A., Surin B. & Taylor W.C. 1997. Expression of the C4 Me1 gene from Flaveria bidentis requires an interaction between 5′ and 3′ sequences. Plant Cell 9: 1515–1525. 10.1105/tpc.9.9.1515Search in Google Scholar PubMed PubMed Central

[58] Marshall D.M., Muhaidat R., Brown N.J., Liu Z., Stanley S., Griffiths H., Sage R.F. & Hibberd J.M. 2007. Cleome, a genus closely related to Arabidopsis, contains species spanning a developmental progression from C3 to C4 photosynthesis. Plant J. 51: 886–96. http://dx.doi.org/10.1111/j.1365-313X.2007.03188.x10.1111/j.1365-313X.2007.03188.xSearch in Google Scholar PubMed

[59] Masumoto C., Miyazawa S.I., Ohkawa H., Fukuda T., Taniguchi Y., Murayama S., Kusano M., Saito K., Fukayama H. & Miyao M. 2010. Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc. Natl. Acad. Sci. USA 107: 5226–5231. http://dx.doi.org/10.1073/pnas.091312710710.1073/pnas.0913127107Search in Google Scholar PubMed PubMed Central

[60] McKown A.D. & Dengler N.G. 2007. Key innovations in the evolution of Kranz anatomy and C4 vein pattern in Flaveria (Asteraceae). Am. J. Bot. 94: 382–399. http://dx.doi.org/10.3732/ajb.94.3.38210.3732/ajb.94.3.382Search in Google Scholar PubMed

[61] Miyao M. 2003. Molecular evolution and genetic engineering of C4 photosynthetic enzymes. J. Exp. Bot. 54: 179–189. http://dx.doi.org/10.1093/jxb/erg02610.1093/jxb/erg026Search in Google Scholar PubMed

[62] Miyao M., Masumoto C., Miyazawa S. & Fukayama H. 2011. Lessons from engineering a single-cell C4 photosynthetic pathway into rice. J. Exp. Bot. 62: 3021–3029. http://dx.doi.org/10.1093/jxb/err02310.1093/jxb/err023Search in Google Scholar PubMed

[63] Monson R.K. & Moore B.D. 1989. On the significance of C3-C4 intermediate photosynthesis to the evolution of C4 photosynthesis. Plant Cell Environ. 12: 689–699. http://dx.doi.org/10.1111/j.1365-3040.1989.tb01629.x10.1111/j.1365-3040.1989.tb01629.xSearch in Google Scholar

[64] Monson R.K. 1999. The origins of C4 genes and evolutionary pattern in the C4 metabolic phenotype, pp. 377–410. In: Sage R.F. & Monson R.K. (eds), C4 plant biology, Academic Press, San Diego. http://dx.doi.org/10.1016/B978-012614440-6/50012-410.1016/B978-012614440-6/50012-4Search in Google Scholar

[65] Monson R.K. 2003. Gene duplication, neofunctionalization, and the evolution of C4 photosynthesis. Int. J. Plant Sci. 164: S43–S54. http://dx.doi.org/10.1086/36840010.1086/368400Search in Google Scholar

[66] Moore B.D., Monson R.K., Ku M.S.B. & Edwards G.E. 1988. Activities of principal photosynthetic and photorespiratory enzymes in leaf mesophyll and bundle sheath protoplasts from the C3-C4 intermediate Flaveria ramosissima. Plant Cell Physiol. 29: 999–1006. Search in Google Scholar

[67] Morgan C.L., Turner S.R. & Rawsthorne S. 1993. Coordination of the cell-specific distribution of the four subunits of glycine decarboxylase and of serine hydroxymethyltransferase in leaves of C3-C4 intermediate species from different genera. Planta 190: 468–473. http://dx.doi.org/10.1007/BF0022478510.1007/BF00224785Search in Google Scholar

[68] Muhaidat R., Sage R.F. & Dengler N.G. 2007. Diversity of Kranz anatomy and biochemistry in C4 eudicots. Am. J. Bot. 94: 362–381. http://dx.doi.org/10.3732/ajb.94.3.36210.3732/ajb.94.3.362Search in Google Scholar PubMed

[69] Muhaidat R., Sage T.L., Frohlich M.W., Dangler N.G. & Sage R.F. 2011. Characterization of C3-C4 intermediate species in the genus Heliotropium L. (Boraginaceae): anatomy, ultrastructure and enzyme activity. Plant Cell Environ. 34: 1723–1736. http://dx.doi.org/10.1111/j.1365-3040.2011.02367.x10.1111/j.1365-3040.2011.02367.xSearch in Google Scholar PubMed

[70] Osborne C.P. & Sack L. 2012. Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Phil. Trans. R. Soc. B. 367: 583–600. http://dx.doi.org/10.1098/rstb.2011.026110.1098/rstb.2011.0261Search in Google Scholar PubMed PubMed Central

[71] Patel M., Siegel A.J. & Berry J.O. 2006. Untranslated regions of FbRbcS1 mRNA mediate bundle sheath cell-specific gene expression in leaves of a C4 plant. J Biol Chem. 281: 25485–25491. http://dx.doi.org/10.1074/jbc.M60416220010.1074/jbc.M604162200Search in Google Scholar PubMed

[72] Peterhansel C., Horst I., Niessen M., Blume C., Kebeish R., Kurkcuoglu S. & Kreuzaler F. 2010. Photorespiration, e0130[2010-3-23]. In: The Arabidopsis book. American Society of Plant Biologists, Rockville. http://www.bioone.org/doi/pdf/10.1199/tab.0130 10.1199/tab.0130Search in Google Scholar PubMed PubMed Central

[73] Peterhansel C. 2011. Best practice procedures for the establishment of a C4 cycle in transgenic C3 plants. J Exp. Bot. 62: 3011–3019. http://dx.doi.org/10.1093/jxb/err02710.1093/jxb/err027Search in Google Scholar PubMed

[74] Rawsthorne S., Hylton C.M., Smith A.M. & Woolhouse H.W. 1988. Distribution of photorespiratory enzymes between bundle-sheath and meso phyll cells in leaves of the C3-C4 intermediate species Moricandia arvensis (L.) DC. Planta 176: 527–532. http://dx.doi.org/10.1007/BF0039766010.1007/BF00397660Search in Google Scholar PubMed

[75] Reed J.E. & Chollet R. 1985. Immunofiuorescent localization of phosphoenolpyruvate carboxylase and ribulose 1,5-bisphosphate carboxylase/oxygenase proteins in leaves of C3, C4, and C3-C4 intermediate Flaveria species. Planta 165: 439–445. http://dx.doi.org/10.1007/BF0039808810.1007/BF00398088Search in Google Scholar PubMed

[76] Rondeau P., Rouch C. & Besnard G. 2005. NADP-malate dehydrogenase gene evolution in Andropogoneae (Poaceae): gene duplication followed by sub-functionalization. Ann. Bot. 96: 1307–1314. http://dx.doi.org/10.1093/aob/mci28210.1093/aob/mci282Search in Google Scholar PubMed PubMed Central

[77] Rosche E. & Westhoff P. 1995. Genomic structure and expression of the pyruvate, orthophosphate dikinase gene of the dicotyledonous C4 plant Flaveria trinervia (Asteraceae). Plant Mol. Biol. 29: 663–678. http://dx.doi.org/10.1007/BF0004115710.1007/BF00041157Search in Google Scholar PubMed

[78] Roth-Nebelsick A., Uhl D., Mosbrugger V. & Hans K. 2001. Evolution and function of leaf venation architecture: A review. Ann. Bot. 87: 553–566. http://dx.doi.org/10.1006/anbo.2001.139110.1006/anbo.2001.1391Search in Google Scholar

[79] Rundel P.W. 1980. The ecological distribution of C4 and C3 grasses in the Hawaiian Islands. Oecologia 45: 354–359. http://dx.doi.org/10.1007/BF0054020510.1007/BF00540205Search in Google Scholar PubMed

[80] Sage R.F. 2004. The evolution of C4 photosynthesis. New Phytol. 161: 341–370. http://dx.doi.org/10.1111/j.1469-8137.2004.00974.x10.1111/j.1469-8137.2004.00974.xSearch in Google Scholar PubMed

[81] Sage R.F. & Sage T.L. 2008. Learning from nature to develop strategies for the directed evolution of C4 rice, pp. 195–216. In: Sheehy J.E., Mitchell P.L. & Hardy B., (eds), Charting New Pathways to C4 Rice, World Scientific Publishing Co. Pte. Ltd, Singapore. http://dx.doi.org/10.1142/9789812709523_001210.1142/9789812709523_0012Search in Google Scholar

[82] Sage R.F., Christin P.A. & Edwards E.J. 2011a. The C4 plant lineages of planet Earth. J. Exp. Bot. 62: 3155–3169. http://dx.doi.org/10.1093/jxb/err04810.1093/jxb/err048Search in Google Scholar PubMed

[83] Sage T.L., Sage R.F., Vogan P.J., Rahman B., Johnson D.C., Oakley J.C. & Heckel M.A. 2011b. The occurrence of C2 photosynthesis in Euphorbia subgenus Chamaesyce (Euphorbiaceae). J. Exp. Bot. 62: 3183–3195. http://dx.doi.org/10.1093/jxb/err05910.1093/jxb/err059Search in Google Scholar PubMed

[84] Sage R.F., Sage T.L. & Kocacinar F. 2012. Photorespiration and the evolution of C4 photosynthesis. Annu. Rev. Plant Biol. 63: 19–47. http://dx.doi.org/10.1146/annurev-arplant-042811-10551110.1146/annurev-arplant-042811-105511Search in Google Scholar PubMed

[85] Shatil-Cohen A., Attia Z. & Moshelion M. 2011. Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA? Plant J. 67: 72–80. http://dx.doi.org/10.1111/j.1365-313X.2011.04576.x10.1111/j.1365-313X.2011.04576.xSearch in Google Scholar PubMed

[86] Sheehy J.E. & Mitchell P.L. 2011. Rice and global food security: the race between scientific discovery and catastrophe, pp. 81–90. In: Pasternak C. (ed.), Access not Excess. The Search for Better Nutrition. Smith-Gordon, Cambridgeshire. Search in Google Scholar

[87] Sheen J. 1990. Metabolic repression of transcription in higher plants. Plant Cell 2: 1027–1038. 10.1105/tpc.2.10.1027Search in Google Scholar PubMed PubMed Central

[88] Suzuki S., Murai N., Kasaoka K., Hiyoshi T., Imaseki H., Burnell J.N. & Arai M. 2006. Carbon metabolism in transgenic rice plants that express phosphoenolpyruvate carboxylase and/or phosphoenolpyruvate carboxykinase. Plant Sci. 170: 1010–1019. http://dx.doi.org/10.1016/j.plantsci.2006.01.00910.1016/j.plantsci.2006.01.009Search in Google Scholar

[89] Taniguchi Y., Nagasaki J., Kawasaki M., Miyake H., Sugiyama T. & Taniguchi M. 2004. Differentiation of dicarboxylate transporters in mesophyll and bundle sheath chloroplasts of maize. Plant Cell Physiol. 45: 187–200. http://dx.doi.org/10.1093/pcp/pch02210.1093/pcp/pch022Search in Google Scholar PubMed

[90] Teeri J.A. & Stowe L.G. 1976. Climatic patterns and the distribution of C4 grasses in North America. Oecologia 23: 1–12. 10.1007/BF00351210Search in Google Scholar PubMed

[91] Tieszen L.L., Reed B.B., Bliss B.B., Wylie B.K. & DeJong D.D. 1997. NDVI, C3 and C4 production, and distributions in Great Plains grassland land cover classes. Ecol. Appl. 7: 59–78. Search in Google Scholar

[92] Tipple B.J. & Pagani M. 2007. The early origins of terrestrial C4 photosynthesis. Annu. Rev. Earth Planet Sci. 35: 435–61. http://dx.doi.org/10.1146/annurev.earth.35.031306.14015010.1146/annurev.earth.35.031306.140150Search in Google Scholar

[93] Voznesenskaya E.V., Koteyeva N.K., Chuong S.D.X., Ivanova A.N., Barroca J., Craven L.A. & Edwards G.E. 2007. Physiological, anatomical and biochemical characterisation of photosynthetic types in genus Cleome (Cleomaceae). Funct. Plant Biol. 34: 247–267. http://dx.doi.org/10.1071/FP0628710.1071/FP06287Search in Google Scholar PubMed

[94] Wan C.S.M. & Sage R.F. 2001. Climate and the distribution of C4 grasses along the Atlantic and Pacific coasts of North America. Can. J. Bot. 79: 474–86. 10.1139/b01-026Search in Google Scholar

[95] Wang X., Gowik U., Tang H., Bowers J.E., Westhoff P. & Paterson A.H. 2009. Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biol. 10: R68. http://dx.doi.org/10.1186/gb-2009-10-6-r6810.1186/gb-2009-10-6-r68Search in Google Scholar PubMed PubMed Central

[96] Weber A.P. & von Caemmerer S. 2010. Plastid transport and metabolism of C3 and C4 plants — comparative analysis and possible biotechnological exploitation. Curr. Opin. Plant Biol. 13: 257–265. http://dx.doi.org/10.1016/j.pbi.2010.01.00710.1016/j.pbi.2010.01.007Search in Google Scholar PubMed

[97] Williams B.P., Aubry S. & Hibberd J.M. 2012. Molecular evolution of genes recruited into C4 photosynthesis. Trends Plant Sci. 17: 213–220. http://dx.doi.org/10.1016/j.tplants.2012.01.00810.1016/j.tplants.2012.01.008Search in Google Scholar PubMed

Published Online: 2013-6-13
Published in Print: 2013-8-1

© 2013 Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11756-013-0191-5/html
Scroll to top button