Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter December 20, 2013

Salt stress enhanced antioxidant response in callus of three halophytes (Salsola baryosma, Trianthema triquetra, Zygophyllum simplex) of Thar Desert

  • Varsha Sharma EMAIL logo and Kishan Ramawat
From the journal Biologia

Abstract

Effects of salinity on growth, protein content, proline, catalase and antioxidant enzyme activity in callus of three halophytes of the Thar Desert; Salsola baryosma, Trianthema triquetra and Zygophyllum simplex were evaluated. Callus tissues were cultured on Murashige and Skoog’s medium containing different concentrations of NaCl (50, 100 and 200 mM). Increase in dry weight and soluble proteins were observed in the callus exposed to lower salinity (50 and 100 mM NaCl) in all the three species, whereas on the medium containing 200 mM NaCl, significant decrease in these two growth parameters was recorded. Under the salinity stress maximum proline accumulation was found in S. baryosma with parallel increase in soluble sugars. Among the three species, T. triquetra callus showed maximum CAT activity with 50 and 100 mM NaCl treatment, whereas the enzyme activity decreased at 200 mM NaCl treatment in all three species. The antioxidant potential steadily elevated under salt treatment in all the above three species using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant potential (FRAP) assay. Whereas, superoxide dismutase (SOD) quenching were recorded maximum at low (50 and 100 mM) concentrations in all the three species. However, T. triquetra callus showed maximum total phenolic content (TPC) 15 mg GAE g−1 with the elevated concentration of NaCl up to 200 mM, and S. baryosma callus showed lower TPC as compared to both species. A significant correlation between antioxidant capacity and TPC was observed indicating that phenolic compounds are the major contributors to the antioxidant potential in these halophyte species. FRAP and DPPH activity of Z. simplex showed maximum correlation (R = 0.992), as compared to other two species. We can conclude that all the three species exhibit a protection mechanism by sustaining growth parameters and antioxidant capacity. Due to high antioxidant property of all these species, the plant extracts may be included in nutraceutical formulations.

[1] Aaby K., Hvattum E. & Skrede G. 2004. Analysis of flavonoids and other phenolic compounds using high-performance liquid chromatography with coulometric array detection: relationship to antioxidant activity. J. Agric. Food Chem. 52: 4595–4603. http://dx.doi.org/10.1021/jf035287910.1021/jf0352879Search in Google Scholar

[2] Aebi H. 1974. Catalase, pp. 673–677. In: Bergmeyer H.U. (ed.), Methods of enzymatic analysis. Academic Press, New York. http://dx.doi.org/10.1016/B978-0-12-091302-2.50032-310.1016/B978-0-12-091302-2.50032-3Search in Google Scholar

[3] Agastian P., Kingsley S.J. & Vivekanandan M. 2000. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 38: 287–290. http://dx.doi.org/10.1023/A:100726693262310.1023/A:1007266932623Search in Google Scholar

[4] Aghaleh M., Niknam V., Ebrahimzadeh H. & Razavi K. 2011. Effect of salt stress on physiological and antioxidative responses in two species of Salicornia (S. persica and S. europaea). Acta Physiol. Plant. 33: 1261–1270. http://dx.doi.org/10.1007/s11738-010-0656-x10.1007/s11738-010-0656-xSearch in Google Scholar

[5] Ashraf M. & Harris P.J.C. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166: 3–16. http://dx.doi.org/10.1016/j.plantsci.2003.10.02410.1016/j.plantsci.2003.10.024Search in Google Scholar

[6] Bates C.J., Waldren R.P. & Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205–207. http://dx.doi.org/10.1007/BF0001806010.1007/BF00018060Search in Google Scholar

[7] Benzie I.F.F. & Strain J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239: 70–76. http://dx.doi.org/10.1006/abio.1996.029210.1006/abio.1996.0292Search in Google Scholar

[8] Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254. http://dx.doi.org/10.1016/0003-2697(76)90527-310.1016/0003-2697(76)90527-3Search in Google Scholar

[9] Couee I., Sulmon C., Gouesbet G. & El Amrani A. 2006. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J. Exp. Bot. 57: 449–459. http://dx.doi.org/10.1093/jxb/erj02710.1093/jxb/erj027Search in Google Scholar PubMed

[10] Deng J., Cheng W. & Yang G. 2011. A novel antioxidant activity index (AAU) for natural products using the DPPH assay. Food Chem. 125: 1430–1435. http://dx.doi.org/10.1016/j.foodchem.2010.10.03110.1016/j.foodchem.2010.10.031Search in Google Scholar

[11] Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A. & Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 38: 350–356. http://dx.doi.org/10.1021/ac60111a01710.1021/ac60111a017Search in Google Scholar

[12] El-Mashad A.A.A. & Mohamed H.I. 2012. Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma 249: 625–635. http://dx.doi.org/10.1007/s00709-011-0300-710.1007/s00709-011-0300-7Search in Google Scholar PubMed

[13] Farkas G.L. & Kiraly Z. 1962. Role of phenolic compound in the physiology of plant diseases and disease resistance. Phytopathol. Zeitsch. 44: 105–150. http://dx.doi.org/10.1111/j.1439-0434.1962.tb02005.x10.1111/j.1439-0434.1962.tb02005.xSearch in Google Scholar

[14] Flowers T.J. & Colmer T.D. 2008. Salinity tolerance in halophytes. New Phytol 179: 945–963. http://dx.doi.org/10.1111/j.1469-8137.2008.02531.x10.1111/j.1469-8137.2008.02531.xSearch in Google Scholar PubMed

[15] Hatano T., Kagawa H., Yasuhara T. & Okuda T. 1988. Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem Pharm Bull 36: 2090–2097 http://dx.doi.org/10.1248/cpb.36.209010.1248/cpb.36.2090Search in Google Scholar PubMed

[16] Jain P.K., Ravichandran V. & Agrawal R.K. 2008. Antioxidant and free radical scavenging properties of traditionally used three Indian medicinal plants. Curr. Trends Biotech. Pharm. 2: 538–547. Search in Google Scholar

[17] Jitesh M.N., Prashanth S.R., Sivaprakash K.R. & Parida A.K. 2006. Antioxidative response mechanism in halophytes: their role in stress defence. J. Genetics 85: 237–253. http://dx.doi.org/10.1007/BF0293534010.1007/BF02935340Search in Google Scholar PubMed

[18] Kasera P.K. & Mohammed S. 2010. Ecology of Inland Saline Plants, pp. 299–320. In: Ramawat K.G. (ed.), Desert Plants. Berlin Heidelberg: Springer-Verlag. DOI 10.1007/978-3-642-02550-1 14 http://dx.doi.org/10.1007/978-3-642-02550-1_1410.1007/978-3-642-02550-1_14Search in Google Scholar

[19] Khan M.A. & Qaiser M. 2006. Halophytes of Pakistan: distribution, ecology, and economic importance, pp. 135–160. In: Khan M.A., Barth H.J., Kust G.C. & Boer B. (eds), Sabkha ecosystems: Vol II, The South and Central Asian countries. Springer, Drodrecht http://dx.doi.org/10.1007/978-1-4020-5072-510.1007/978-1-4020-5072-5Search in Google Scholar

[20] Khan M.A., Ansari R., Gul B. & Qadir M. 2006. Crop diversification through halophyte production on salt-prone land resources. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 1: 1–9. Search in Google Scholar

[21] Ksouri R., Megdiche W., Debez A., Falleh H., Grignon C. & Abdelly C. 2007. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritime. Plant Physiol. Biochem. 45: 244–249. http://dx.doi.org/10.1016/j.plaphy.2007.02.00110.1016/j.plaphy.2007.02.001Search in Google Scholar PubMed

[22] Li Y. 2008. Kinetics of the antioxidant response to salinity in the halophyte Limonium bicolor. Plant Soil Environ. 54: 493–497. 10.17221/434-PSESearch in Google Scholar

[23] Lokhande V.H. & Suprasanna P. 2012. Prospects of halophytes in understanding and managing abiotic stress tolerance, pp. 29–56. In: Ahmad P. & Prasad M.N.V. (eds), Environmental adaptations and stress tolerance of plants in the era of climate change. Springer Science+Business Media DOI 10.1007/978-1-4614-0815-4 2 http://dx.doi.org/10.1007/978-1-4614-0815-4_210.1007/978-1-4614-0815-4_2Search in Google Scholar

[24] Luna C.M., Pastori G.M., Driscoll S., Groten K., Bernard S. & Foyer C.H. 2004. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J. Exp. Bot. 56: 417–423. http://dx.doi.org/10.1093/jxb/eri03910.1093/jxb/eri039Search in Google Scholar PubMed

[25] Martinez J.P., Kinet J.M., Bajji M. & Lutts S. 2005. NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. J. Exp. Bot. 56: 2421–2431. http://dx.doi.org/10.1093/jxb/eri23510.1093/jxb/eri235Search in Google Scholar PubMed

[26] Matkowski A. 2008. Plant in vitro culture for the production of antioxidants — a review. Biotech. Adv. 26: 548–560 http://dx.doi.org/10.1016/j.biotechadv.2008.07.00110.1016/j.biotechadv.2008.07.001Search in Google Scholar PubMed

[27] Megdiche W., Amor N.D.A., Hessini K., Ksouri R., Zuily-Fodil Y. & Abdelly C. 2007. Salt tolerance of the annual halophyte Cakile maritima as affected by the provenance and the developmental stage. Acta Physiol. Plant. 29: 375–384. http://dx.doi.org/10.1007/s11738-007-0047-010.1007/s11738-007-0047-0Search in Google Scholar

[28] Mittler R., Vanderauwera S., Gollery M. & Breusegem F.V. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9: 490–498. http://dx.doi.org/10.1016/j.tplants.2004.08.00910.1016/j.tplants.2004.08.009Search in Google Scholar PubMed

[29] Munns R. & Tester M. 2008. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol. 59: 651–681. http://dx.doi.org/10.1146/annurev.arplant.59.032607.09291110.1146/annurev.arplant.59.032607.092911Search in Google Scholar PubMed

[30] Murashige T & Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x10.1111/j.1399-3054.1962.tb08052.xSearch in Google Scholar

[31] Noctor G. & Foyer C.H. 1998. Ascorbate and glutathione: keeping active oxygen under control. Ann. Rev. Plant. Physiol. Plant Mol. Biol. 49: 249–279. http://dx.doi.org/10.1146/annurev.arplant.49.1.24910.1146/annurev.arplant.49.1.249Search in Google Scholar PubMed

[32] Pang C.H., Zhang S.J., Gong Z.Z. & Wang B.S. 2005. NaCl treatment markedly enhances H2O2-scavenging system in leaves of halophyte Suaeda salsa. Physiol. Plant. 125: 490–499. http://dx.doi.org/10.1111/j.1399-3054.2005.00585.x10.1111/j.1399-3054.2005.00585.xSearch in Google Scholar

[33] Parvaiz A. & Satyawati S. 2008. Salt stress and phyto-biochemical responses of plants — a review. Plant Soil Environ. 54: 89–99. 10.17221/2774-PSESearch in Google Scholar

[34] Queirós F., Rodrigues J.A., Almeida J.M., Almeida D.P.F. & Fidalgo F. 2011. Differential responses of the antioxidant defense system and ultra structure in a salt-adapted potato cell line. Plant Physiol. Biochem. 49: 1410–1419. http://dx.doi.org/10.1016/j.plaphy.2011.09.02010.1016/j.plaphy.2011.09.020Search in Google Scholar PubMed

[35] Shabala S. & Mackay A. 2011. Ion transport in halophytes. Adv. Bot. Res. 57: 151–199. http://dx.doi.org/10.1016/B978-0-12-387692-8.00005-910.1016/B978-0-12-387692-8.00005-9Search in Google Scholar

[36] Sharma V. & Ramawat K.G. 2013. Salinity-induced modulation of growth and antioxidant activity in the callus cultures of miswak (Salvadora persica). 3 Biotech 1–7. DOI 10.1007/s13205-012-0064-6 3: 11-17. 10.1007/s13205-012-0064-6Search in Google Scholar PubMed PubMed Central

[37] Subudhi P.K. & Baisakh N. 2011. Spartina alterniflora Loisel. a halophytes grass model to dissect salt stress tolerance. In Vitro Cell. Dev. Biol. Plant47: 441–457. 10.1007/s11627-011-9361-8Search in Google Scholar

[38] Tester M. & Davenport R. 2003. Na+ tolerance and Na+ transport in higher plants. Ann Bot. 91: 503–5027. http://dx.doi.org/10.1093/aob/mcg05810.1093/aob/mcg058Search in Google Scholar PubMed PubMed Central

[39] Torabi S. & Niknam V. 2011. Effects of iso-osmotic concentrations of NaCl and mannitol on some metabolic activity in calluses of two Salicornia species. In Vitro Cell. Dev. Biol. Plant 47: 734–742. http://dx.doi.org/10.1007/s11627-011-9371-610.1007/s11627-011-9371-6Search in Google Scholar

[40] Wang B., Luttge U. & Ratajczak R. 2004. Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa L. J. Plant Physiol. 161: 285–293. http://dx.doi.org/10.1078/0176-1617-0112310.1078/0176-1617-01123Search in Google Scholar PubMed

[41] Yang Y., Wei X., Shi R., Fan Q. & An L. 2010. Salinity-induced physiological modification in the callus from halophytes Nitraria tangutorum Bobr. J. Plant Growth Regul. 29: 465–476. http://dx.doi.org/10.1007/s00344-010-9158-810.1007/s00344-010-9158-8Search in Google Scholar

Published Online: 2013-12-20
Published in Print: 2014-2-1

© 2013 Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11756-013-0298-8/html
Scroll to top button