Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter February 18, 2014

Antioxidant responses of halophyte plant Aeluropus littoralis under long-term salinity stress

  • Mostafa Modarresi EMAIL logo , Fatemeh Moradian and Ghorban Nematzadeh
From the journal Biologia

Abstract

Salinity influences the agricultural production all over the world. This constrain, similar to others biotic and abiotic stresses generate the reactive oxygen species such as superoxide, hydrogen peroxide and hydroxyl radicals. In the evolution process of halophyte plants the mechanisms to detoxify ROS, such as antioxidant enzymes, have been developed. Aeluropus littoralis is a special halophyte that selected to our research, so the plants treated with NaCl at different salt concentration (0, 250, 450 and 650 mM) for a period 45 days. Leaves and roots (separately) collected and their proteins extracted for superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) activity assay. Meanwhile the electrolyte leakage of leaves analyzed and increased at 450 and 650 mM of NaCl concentrations. Superoxide dismutase and catalase showed same pattern for changing in enzymatic activities (increasing activity by salt stress in roots and decreasing in shoot at 450 and 650 mM stress), also peroxidase and ascorbate peroxidase activity almost increased in all stress conditions.

[1] Abedi T. & Pakniyat H. 2010. Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech J. Genetics Plant Breed. 46: 27–34. 10.17221/67/2009-CJGPBSearch in Google Scholar

[2] Aebi H. 1984. Catalase in vitro, pp. 121–126. In: Lester P. (ed.), Methods in Enzymology. Academic Press. 10.1016/S0076-6879(84)05016-3Search in Google Scholar

[3] Amor N.B., Jiménez A., Megdiche W., Lundqvist M., Sevilla F. & Abdelly C. 2007. Kinetics of the anti-oxidant response to salinity in the halophyte Cakile maritima. J. Integ. Plant Biol. 49: 982–992. http://dx.doi.org/10.1111/j.1672-9072.2007.00491.x10.1111/j.1672-9072.2007.00491.xSearch in Google Scholar

[4] Asada K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141: 391–396. http://dx.doi.org/10.1104/pp.106.08204010.1104/pp.106.082040Search in Google Scholar

[5] Athar H-u-R., Khan A. & Ashraf M. 2008. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ. Exp. Bot. 63: 224–231. http://dx.doi.org/10.1016/j.envexpbot.2007.10.01810.1016/j.envexpbot.2007.10.018Search in Google Scholar

[6] Beauchamp C. & Fridovich I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276–287. http://dx.doi.org/10.1016/0003-2697(71)90370-810.1016/0003-2697(71)90370-8Search in Google Scholar

[7] Ben Amor N., Ben Hamed K., Debez A., Grignon C. & Abdelly C. 2005. Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci. 168: 889–899. http://dx.doi.org/10.1016/j.plantsci.2004.11.00210.1016/j.plantsci.2004.11.002Search in Google Scholar

[8] Ben Saad R., Zouari N., Ben Ramdhan W., Azaza J., Meynard D., Guiderdoni E. & Hassairi A. 2010. Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol. Biol. 72: 171–190. http://dx.doi.org/10.1007/s11103-009-9560-410.1007/s11103-009-9560-4Search in Google Scholar

[9] Bowler C., Van Montagu M. & Inzé D. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. 43: 83–116. http://dx.doi.org/10.1146/annurev.pp.43.060192.00050310.1146/annurev.pp.43.060192.000503Search in Google Scholar

[10] Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 72: 248–254. http://dx.doi.org/10.1016/0003-2697(76)90527-310.1016/0003-2697(76)90527-3Search in Google Scholar

[11] Davies K.J.A. 1987. Protein damage and degradation by oxygen radicals — I. General aspects. J. Biol. Chem. 262: 9895–9901. 10.1016/S0021-9258(18)48018-0Search in Google Scholar

[12] de Azevedo Neto A.D., Prisco J.T., Enéas-Filho J., Abreu C.E.B. & Gomes-Filho E. 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salttolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56: 87–94. http://dx.doi.org/10.1016/j.envexpbot.2005.01.00810.1016/j.envexpbot.2005.01.008Search in Google Scholar

[13] Deeba F., Pandey A.K., Ranjan S., Mishra A., Singh R., Sharma Y.K., Shirke P.A. & Pandey V. 2012. Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol. Biochem. 53: 6–18. http://dx.doi.org/10.1016/j.plaphy.2012.01.00210.1016/j.plaphy.2012.01.002Search in Google Scholar

[14] Dionisio-Sese M.L. & Tobita S. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135: 1–9. http://dx.doi.org/10.1016/S0168-9452(98)00025-910.1016/S0168-9452(98)00025-9Search in Google Scholar

[15] Gunes A., Pilbeam D.J., Inal A. & Coban S. 2008. Influence of silicon on sunflower cultivars under drought stress, I: Growth, antioxidant mechanisms, and lipid peroxidation. Comm. Soil Sci. Plant Analysis 39: 1885–1903. http://dx.doi.org/10.1080/0010362080213465110.1080/00103620802134651Search in Google Scholar

[16] Hafsi C., Romero-Puertas M.C., Gupta D.K., del Río L.A., Sandalio L.M. & Abdelly C. 2010. Moderate salinity enhances the antioxidative response in the halophyte Hordeum maritimum L. under potassium deficiency. Environ. Exp. Bot. 69: 129–136. http://dx.doi.org/10.1016/j.envexpbot.2010.04.00810.1016/j.envexpbot.2010.04.008Search in Google Scholar

[17] Hoagland D.R. & Arnon D.I. 1950. Antioxidant responses of two barley varieties to saline stress. California Agricul. Exp. Station Circ. 347: 1–32. Search in Google Scholar

[18] Jiang Y., Yang B., Harris N.S. & Deyholos M.K. 2007. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J. Exp. Bot. 58: 3591–3607. http://dx.doi.org/10.1093/jxb/erm20710.1093/jxb/erm207Search in Google Scholar PubMed

[19] Khan M. & Panda S. 2008. Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaClsalinity stress. Acta Physiol. Plant. 30: 81–89. http://dx.doi.org/10.1007/s11738-007-0093-710.1007/s11738-007-0093-7Search in Google Scholar

[20] Li M.Y. & Liu Y.J. 1994. Halophytes of Yellow River Delta in north Shandong Province of China. J. Qufu Normal Univ.: 125–133. Search in Google Scholar

[21] Mateo A., Mühlenbock P., Rustérucci C., Chang C.C-C., Miszalski Z., Karpinska B., Parker J.E., Mullineaux P.M. & Karpinski S. 2004. LESION SIMULATING DISEASE 1 Is required for acclimation to conditions that promote excess excitation energy. Plant Physiol. 136: 2818–2830. http://dx.doi.org/10.1104/pp.104.04364610.1104/pp.104.043646Search in Google Scholar PubMed PubMed Central

[22] Mhadhbi H., Jebara M., Limam F. & Aouani M.E. 2004. Rhizobial strain involvement in plant growth, nodule protein composition and antioxidant enzyme activities of chickpearhizobia symbioses: modulation by salt stress. Plant Physiol. Biochem. 42: 717–722. http://dx.doi.org/10.1016/j.plaphy.2004.07.00510.1016/j.plaphy.2004.07.005Search in Google Scholar PubMed

[23] Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405–410. http://dx.doi.org/10.1016/S1360-1385(02)02312-910.1016/S1360-1385(02)02312-9Search in Google Scholar

[24] Modarresi M., Nematzadeh G., Moradian F. & Alavi S. 2012. Identification and cloning of the Cu/Zn superoxide dismutase gene from halophyte plant Aeluropus littoralis. Russian J. Genetics 48: 118–122. http://dx.doi.org/10.1134/S102279541110012710.1134/S1022795411100127Search in Google Scholar

[25] Modarresi M., Nematzadeh G.A. & Moradian F. 2013a. Molecular characterization of two new Cu/Zn superoxide dismutase genes from halophyte Aeluropus lagopoides. J. Crop Improv. 27: 627–635. http://dx.doi.org/10.1080/15427528.2013.81905710.1080/15427528.2013.819057Search in Google Scholar

[26] Modarresi M., Nematzadeh G.A. & Moradian F. 2013b. Salinity response pattern and isolation of catalase gene from halophyte plant Aeluropus littoralis. Photosynthetica 51: 621–629. http://dx.doi.org/10.1007/s11099-013-0060-z10.1007/s11099-013-0060-zSearch in Google Scholar

[27] Modarresi M., Nematzadeh G.A. & Zarein M. 2013c. Glyceraldehyde-3-phosphate dehydrogenase gene from halophyte Aeluropus lagopoides: Identification and characterization. J. Crop Improv. 27: 281–290. http://dx.doi.org/10.1080/15427528.2013.76629410.1080/15427528.2013.766294Search in Google Scholar

[28] Nakano Y. & Asada K. 1981. Hydrogen Peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867–880. Search in Google Scholar

[29] Noreen Z. & Ashraf M. 2009. Changes in antioxidant enzymes and some key metabolites in some genetically diverse cultivars of radish (Raphanus sativus L.). Environ. Exp. Bot. 67: 395–402. http://dx.doi.org/10.1016/j.envexpbot.2009.05.01110.1016/j.envexpbot.2009.05.011Search in Google Scholar

[30] Örvar B.L. & Ellis B.E. 1997. Transgenic tobacco plants expressing antisense RNA for cytosolic ascorbate peroxidase show increased susceptibility to ozone injury. Plant J. 11: 1297–1305. http://dx.doi.org/10.1046/j.1365-313X.1997.11061297.x10.1046/j.1365-313X.1997.11061297.xSearch in Google Scholar

[31] Ranieri A., Petacco F., Castagna A. & Soldatini G.F. 2000. Redox state and peroxidase system in sunflower plants exposed to ozone. Plant Sci. 159: 159–167. http://dx.doi.org/10.1016/S0168-9452(00)00352-610.1016/S0168-9452(00)00352-6Search in Google Scholar

[32] Schafer F.Q., Wang H.P., Kelley E.E., Cueno K.L., Buettner S.M.M. & G.R. 2002. Comparing β-Carotene, vitamin E and nitric oxide as membrane antioxidants. Biol. Chem. 383: 671–681. http://dx.doi.org/10.1515/BC.2002.06910.1515/BC.2002.069Search in Google Scholar PubMed

[33] Seckin B., Turkan I., Sekmen A.H. & Ozfidan C. 2010. The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environ. Exp. Bot. 69: 76–85. http://dx.doi.org/10.1016/j.envexpbot.2010.02.01310.1016/j.envexpbot.2010.02.013Search in Google Scholar

[34] Shigeoka S., Ishikawa T., Tamoi M., Miyagawa Y., Takeda T., Yabuta Y. & Yoshimura K. 2002. Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot. 53: 1305–1319. http://dx.doi.org/10.1093/jexbot/53.372.130510.1093/jexbot/53.372.1305Search in Google Scholar

[35] Turhan E., Gulen H. & Eris A. 2008. The activity of antioxidative enzymes in three strawberry cultivars related to salt-stress tolerance. Acta Physiol. Plant. 30: 201–208. http://dx.doi.org/10.1007/s11738-007-0108-410.1007/s11738-007-0108-4Search in Google Scholar

[36] Xiao X., Xu X. & Yang F. 2008. Adaptive responses to progressive drought stress in two Populus cathayana populations. Silva Fennica 42: 705–719. 10.14214/sf.224Search in Google Scholar

[37] Yan L. & Guizhu C. 2007. Physiological adaptability of three mangrove species to salt stress. Acta Ecol. Sinica 27: 2208–2214. http://dx.doi.org/10.1016/S1872-2032(07)60052-310.1016/S1872-2032(07)60052-3Search in Google Scholar

Published Online: 2014-2-18
Published in Print: 2014-4-1

© 2014 Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11756-014-0338-z/html
Scroll to top button