Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter August 19, 2014

A reliable and efficient protocol for induction of hairy roots in Agastache foeniculum

  • Elnaz Nourozi EMAIL logo , Bahman Hosseini and Abbas Hassani
From the journal Biologia

Abstract

Hairy root culture system is a valuable tool to study the characteristics of gene expression, gene function, root biology, biochemical properties and biosynthesis pathways of secondary metabolites. In the present study, hairy roots were established in Anise hyssop (Agastache foeniculum) via Agrobacterium rhizogenes. Three strains of Agrobacterium rhizogenes (A4, A7 and 9435), were used for induction of hairy roots in four various explants (hypocotyl, cotyledon, one-month-old leaf and five-month-old leaf) of Anise hyssop. The highest frequency of transformation was achieved using A4 strain in one-month-old leaves (51.1%). The transgenic states of hairy root lines were confirmed by PCR (Polymerase chain reaction) method. High performance liquid chromatography analysis revealed that the production of rosmarinic acid (RA) in transformed roots of A. foeniculum was almost 4-fold higher than that of the non-transformed roots. In a separate experiment, hairy roots obtained from one-month-old leaves inoculated with A4 strain, were grown in liquid medium and the effects of different concentrations of salicylic acid (0.0, 0.01, 0.1 and 1 mM) and chitosan (0, 50, 100 and 150 mg L−1) (as elicitor) and sucrose (20, 30, 40 and 50 g L−1) on the growth of hairy roots were evaluated. The results showed that, 30 g L−1 sucrose and 100 mg L−1 chitosan increased the biomass of hairy root cultures and application of salicylic acid reduced the growth of hairy roots compared with control roots.

[1] Ahmadian N., Sharifi M., Karimi F. & Rahnema H. 2010. Comparison of tropane alkaloids production in hairy roots and seedlings in Atropa belladonna L. effect by salicylic acid. Iranian J. Plant Biol. 1: 63–76. Search in Google Scholar

[2] Ali M., Kiani B.H., Mannan A., Ismail T. & Mirza B. 2012. Enhanced production of artemisinin by hairy root culture of Artemisia dubia. J. Med. Plants Res. 6: 1619–1622. 10.5897/JMPR11.1268Search in Google Scholar

[3] Aoki S. 2004. Resurrection of an ancestral gene: functional and evolutionary analyses of the Ng rol genes trans-ferred from Agrobacterium to Nicotiana. J. Plant. Res. 117: 329–337. 10.1007/s10265-004-0163-5Search in Google Scholar

[4] Bais H.P., Walker T.S., Schweizer H.P. & Vivanco J.M. 2002. Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy rot cultures of Ocimum basilicum. Plant Physiol. Biochem. 40: 983–995. 10.1016/S0981-9428(02)01460-2Search in Google Scholar

[5] Bensaddek L., Villarreal M.L. & Fliniaux M.A. 2008. Induction and growth of hairy roots for the production of medicinal compounds. Electron. J. Integr. Biosci. 3: 2–9. Search in Google Scholar

[6] Bertani G. 1952. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62: 293–300. 10.1128/jb.62.3.293-300.1951Search in Google Scholar PubMed PubMed Central

[7] Bulgakov P. 2008. Functions of rol genes in plant secondary metabolism. Biotech. Adv. 23(4): 318–324. http://dx.doi.org/10.1016/j.biotechadv.2008.03.00110.1016/j.biotechadv.2008.03.001Search in Google Scholar PubMed

[8] Bulgakov V.P., Veselova M.V. & Tchernoded G.K. 2005. Inhibitory effect of the Agrobacterium rhizogenes rol gene on rabdosiin and RA production in Eritrichium sericeum and Lithospermum erythrorhizon transformed cell cultures. Planta. 221: 471–478. http://dx.doi.org/10.1007/s00425-004-1457-510.1007/s00425-004-1457-5Search in Google Scholar PubMed

[9] Cao D., Hou W., Song S., Sun H., Wu C., Gao Y. & Han T. 2009. Assessment of condition affecting Agrobacterium rhizogenes — mediated transformation of soybean. Plant Cell. Tiss. Org. Cult. 96: 45–52. http://dx.doi.org/10.1007/s11240-008-9458-x10.1007/s11240-008-9458-xSearch in Google Scholar

[10] Cardarelli M., Mariotti D. & Pomponi M. 1987. Agrobacterium rhizogenes TDNA genes capable of inducing hairy root phenotype. Mol. Gen. Genet. 209: 475–480. http://dx.doi.org/10.1007/BF0033115210.1007/BF00331152Search in Google Scholar PubMed

[11] Chichana N. & Dheeranupattana S. 2012. Effect of methyl jasmonate and salicylic acid on alkaloid production from in vitro culture of Stemona sp. Inter. J. Biosci. Biochem. Bioinforma. 2: 146–150. 10.7763/IJBBB.2012.V2.89Search in Google Scholar

[12] Choudhary R.K., Saroha A.E. & Swarnkar P.L. 2011. Radical scavenging activity of phenolics and flavonoids in some medicinal plants of India. J. Pharmacy. Res. 4: 712–713. Search in Google Scholar

[13] Christey M.C. & Braun R.H. 2005. Production of hairy root cultures and transgenic plants by Agrobacterium rhizogenes — mediated transformation. Methods. Mol. Biol. 286: 47–60. Search in Google Scholar

[14] Chtikadachanarong k., Dheeranupattana S., Jatisatienr A., Wangkarn S., Mungkornasawakul P., Pyne S.G., Ung A.T. & Sastraruju T. 2011. Influence of salicylic acid on alkaloid production by root culture of Stemona curisii Hook. F. J. Biol. Sci. 3: 322–325. Search in Google Scholar

[15] Danphitsanuparn P., Boonsnongcheep P., Boribonkaset T., Chintapakorn Y. & Prathanturarug S. 2012. Effect of Agrobacterium rhizogenes strains and other parameters on production of isoflavonoids in hairy roots of Pueraria condollei Grah. Plant Cell. Tiss. Org. Cult. 111: 315–322. http://dx.doi.org/10.1007/s11240-012-0196-810.1007/s11240-012-0196-8Search in Google Scholar

[16] Doma M., Abhayankar G., Reddy V.D. & Kavikishor P.B. 2012. Carbohydrate and elicitor enhanced withanolied (withaferin A and withanolide A) accumulation hairy root culture of Withania somnifera (L). Indian. J. Exp. Biol. 50: 484–490. Search in Google Scholar

[17] Eghdami A., Hashemi Sohi S.M., Eradatmand Asli D. & Houshmandfar A. 2011. Antioxidant activity of methanolin and hydroalcohlic extracts of Garlic plant. Adv. Environ. Biol. 5: 1575–1578. Search in Google Scholar

[18] Fesen M.R., Kohn K.W., Leteutre F. & Pommier Y. 1993. Inhibitores of human immunodeficiency virus integrase. Proc. Natl. Acad. Sci. U.S.A. 90: 507–511. http://dx.doi.org/10.1073/pnas.90.6.239910.1073/pnas.90.6.2399Search in Google Scholar

[19] Gangopadhyay M., Chakraborty D. & Bhattacharyya S. 2010. Regeneration of transformed plants from hairy root of Plumbago indica. Plant Cell. Tiss. Org. Cult. 120: 109–114. http://dx.doi.org/10.1007/s11240-010-9702-z10.1007/s11240-010-9702-zSearch in Google Scholar

[20] Gorgiev M., Pavlov A. & Bley T. 2007. Hairy root type plant in vitro systems as sources of bioactive substances. Appl. Microbiol. Biotechnol. 74: 1175–1185. http://dx.doi.org/10.1007/s00253-007-0856-510.1007/s00253-007-0856-5Search in Google Scholar

[21] Guillun S., Tremouillaux-Guiller J., Pati P.K., Rideau M. & Ganten P. 2006. Hairy root research: recent scenario and exciting prospects. Curr. Opin. Plant Biol. 9: 341–346. http://dx.doi.org/10.1016/j.pbi.2006.03.00810.1016/j.pbi.2006.03.008Search in Google Scholar

[22] Hamill J.D. 1993. Alterations in auxin and cytikinin metabolism of higher plants due to expression of specific genes from pathogenic bacteria. a review”. Aust. J. Plant Physiol. 20: 405–423. 10.1071/PP9930405Search in Google Scholar

[23] Hu Z.B. & Du M. 2006. Hairy root and its application in plant genetic engineering. J. Integr. Plant Biol. 48: 121–127. http://dx.doi.org/10.1111/j.1744-7909.2006.00121.x10.1111/j.1744-7909.2006.00121.xSearch in Google Scholar

[24] Jin J.H., Shin J.H., Kim J.H. & Lee H.J. 1999. Effect of chitosan elivitation and media components on the production of Anthraquinone colorants in Madder (Rubia akane Nakaki) cell culture. Biotechnol. Bioprocess. Eng. 4: 300–304. http://dx.doi.org/10.1007/BF0293375710.1007/BF02933757Search in Google Scholar

[25] Kayser O. & Quax W.G. 2007. Medicinal plant biotechnology. Vol. 1, WILEY-VCH Verlag GmbH & Co., Weinheim, 604 pp. 10.1002/9783527619771Search in Google Scholar

[26] Khan S., Irfan Q.M., Kamaluddin A.T. & Abdin M.Z. 2007. Protocol for isolation of genomic DNA from dry and fresh roots of medicinal plants suitable for RAPD and restriction digestion. Afr. J. Biotechnol. 6: 175–178. Search in Google Scholar

[27] Komariah P., Naga Amrutha R., Kavi Kishor P.B. & Ramakrishna S.V. 2002. Elicitor enhanced production of plumbagin in suspension cultures of Plumbago rosea L. Enzyme. Microb. Tech. 31: 634–639. http://dx.doi.org/10.1016/S0141-0229(02)00159-X10.1016/S0141-0229(02)00159-XSearch in Google Scholar

[28] Lee S.Y., Lee Ch.Y., Eom S.H., Kim Y.K., Park N. & Park S.U. 2010. Rosmarinic acid production from transformed root cultures of Nepeta cataria L. Sci. Res. Essays. 5(10): 1122–1126. Search in Google Scholar

[29] Lee S.Y., Xu H., Kim Y.K. & Park S.U. 2008. Rosmarinic acid production in hairy root cultures of Agastache rugosa Kuntze. World J. Microbial. Biotechnol. 24: 969–972. http://dx.doi.org/10.1007/s11274-007-9560-y10.1007/s11274-007-9560-ySearch in Google Scholar

[30] Lemcke K. & Schmulling T. 1998. Gain of function assays identify non rol genes from Agrobacterium rhizogenes TLDNA that alter plant morphogenesis or hormone sensitivity. Plant. J. 15: 423–433. http://dx.doi.org/10.1046/j.1365-313X.1998.00223.x10.1046/j.1365-313X.1998.00223.xSearch in Google Scholar

[31] Luo C., Peng Z. & Pu L. 2004. Transformation of medicinal plants mediated by Agrobacterium rhizogenes. Biotechnology. 14: 58–61. Search in Google Scholar

[32] Matei C.F. 2012. Researches regarding the biology and crop technology of the Agastache foeniculum (Pursh) Kuntze species in the conditions of Transylvania plane. Dissertation, University of agricultural sciences and veterinary medicine Cluj-Napoca Faculty of agriculture. Search in Google Scholar

[33] Morgan J.A., Bamey C.S., Penn A.H. & Shnks J.V. 2000. Effects of buffered media upon growth and alkaloid production of Catharanthus roseus hairy roots. Appl. Microbiol. Biotechnol. 53: 205–210. http://dx.doi.org/10.1007/s00253005001810.1007/s002530050018Search in Google Scholar PubMed

[34] Murashige T. & Skoog F. 1962. A revised medium for rapid growth and bioassays with Tobacco tissue cultures. Physiol. Plant. 15: 473–497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x10.1111/j.1399-3054.1962.tb08052.xSearch in Google Scholar

[35] Nguyen C., Bourgaud F., Forlot P. & Guckert A. 1992. Establishment of hairy root cultures of Psoralea species. Plant. Cell. Rep. 11: 424–427. http://dx.doi.org/10.1007/BF0023437510.1007/BF00234375Search in Google Scholar PubMed

[36] Omidbaigi R. 2007. Production and processing of medicinal plants. Astane Quds, Mashhed, 424 pp. Search in Google Scholar

[37] Ono N.N. & Tain L. 2011. The multiplicity of hairy root cultures: prolific possibilities. Plant Sci. 180: 439–446. http://dx.doi.org/10.1016/j.plantsci.2010.11.01210.1016/j.plantsci.2010.11.012Search in Google Scholar PubMed

[38] Palazon J., Cusido R.M., Bontill M., Mallol A., Moyano E., Morales C. & Pinol M.T. 2003a. Elicitation of different Panax ginseng transformed root phenotypes for an improved ginsenoside production. Plant Physiol. Biochem. 41: 1019–1025. 10.1016/j.plaphy.2003.09.002Search in Google Scholar

[39] Palazon J., Cusido R.M., Roig C. & Pinol M.T. 1997. Effect of rol genes from Agrobacterium rhizogenes TL-DNA on nicotine production in tobacco root cultures. Plant. Physiol. Bioch. 35: 155–162. Search in Google Scholar

[40] Palazon J., Mallol A., Eibl R., Lettenbauer C., Cusido R.M. & Pinol M.T. 2003b. Growth and ginsenoside production in hairy root cultures of Panax ginseng using a novel bioreactor. Planta. Med. 69: 344–349. http://dx.doi.org/10.1055/s-2003-3887310.1055/s-2003-38873Search in Google Scholar PubMed

[41] Pawar P.K. & Matheshwari V.L. 2003. Agrobacterium rhizogenes mediated hairy root induction in two medicinally important of family. Indian J. Biotechnol. 3: 414–417. Search in Google Scholar

[42] Pirian K., Piri Kh. & Ghiyasvand T. 2012. Hairy roots induction from Protulaca oleracea using Agrobacterium rhizogenes to noradenaline’s production. Int. Res. J. Appl. Basic. Sci. 3: 642–649. Search in Google Scholar

[43] Porter J.R. 1991. Host range and implication of plainftion by Agrobacterium rhizogenes. Crit. Rev. Plant Sci. 10: 387–421. http://dx.doi.org/10.1080/0735268910938231810.1080/07352689109382318Search in Google Scholar

[44] Putalun W., Pimmeuangkao S., De-Eknamkul W., Tanaka H. & Shoyama Y. 2006. Sennosides A and B production by hairy roots of Senna alata (L.) Roxb. Z. Naturforsch. C.Biosci. 61: 367–371. 10.1515/znc-2006-5-612Search in Google Scholar PubMed

[45] Samadi A., Carapetian J., Heidary R., Gafari M. & Hssanzadeh A. 2012. Hairy root induction in Linum mucronatum ssp. mucronatum an anti-tumor lignans production plant. Not. Bot. Hort. Agrobot. Cluj 40: 125–131. 10.15835/nbha4017312Search in Google Scholar

[46] Sanford R.A. & Hutchings G.P. 1987. Chitosan-a natural, cationic biopolymeras commercial application, pp. 363–376. In: Rapalma M. (ed.) Industrial Polysaccharides. Genetic Engineering, Structure/Property relations and Application, Amsterdum, The Netherlands. Search in Google Scholar

[47] Sevon N., Hiltunen R. & Oksman-Caldentey K.M. 1992. Chitosan increases hyoscyamine content in hairy root cultures of Hyoscyamus muticus. Pharm. Pharmacol. Lett. 2: 96–99. Search in Google Scholar

[48] Sharafi A., Hashemisohi H., Mousavi A., Azadi P., Razavi Kh. & Otang Nuti V. 2013. A reliable and efficient protocol for inducing hairy roots in Papaver bracteatum. Plant Cell. Tiss. Org. Cult 113: 1–9. http://dx.doi.org/10.1007/s11240-012-0246-210.1007/s11240-012-0246-2Search in Google Scholar

[49] Smetanska I. 2008. Production of secondary metabolites using plant cell cultures. Adv. Biochem. Eng. Biotechnol. 111: 187–228. 10.1007/10_2008_103Search in Google Scholar PubMed

[50] Soleimani T., Keyhanfer M., Piri K.H. & Hsanloo T. 2012. Morphological evaluation of hairy roots induced in Artemisia annua L. and investigating elicitation effects on hairy roots biomass production. Intl. J. Agric. Res & Rev. 2: 1005–1013. Search in Google Scholar

[51] Weber R.L.M. & Bodanese-Zanettini M.H. 2011. Induction of transgenic hairy roots in soybean genotypes by Agrobacterium rhizogenes-mediated transformation. Pesqui. Agropecu. Bras. 46: 1070–1075. 10.1590/S0100-204X2011000900014Search in Google Scholar

[52] Yoshikawa M. 1978. Diverse modes of action of biotic and abiotic phytoalexin elicitors. Nature. 275: 546–547. http://dx.doi.org/10.1038/275546a010.1038/275546a0Search in Google Scholar

[53] Xu H., Park J.H., Kim Y.K., Park N., Lee S.Y. & Un S. 2009. Optimization of growth and pyranocoumarins production in hairy root culture of Angelica gigas Nakai. J. Med. Plants. Res. 3: 978–981. Search in Google Scholar

Published Online: 2014-8-19
Published in Print: 2014-7-1

© 2014 Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11756-014-0382-8/html
Scroll to top button