Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter November 7, 2014

Sex chromosome composition revealed in Characidium fishes (Characiformes: Crenuchidae) by molecular cytogenetic methods

  • Marlon Pazian EMAIL logo , Claudio Oliveira and Fausto Foresti
From the journal Biologia

Abstract

The W chromosome of the fishes Characidium cf. fasciatum, Characidium sp. and Characidium cf. gomesi is heterochromatic, as is usually seen in most Characidium species. Samples of W-chromatin were collected by mechanical microdissection and amplified by DOP-PCR (degenerate oligonucleotide-primed polymerase chain reaction), to be used as painting probes (DCg and CgW) and for sequence analysis. FISH (fluorescence in situ hybridization) with DCg probe painted the whole W chromosome, the pericentromeric region of Z chromosomes and the terminal region of B chromosomes. DOP-PCR-generated fragments were cloned, sequenced and tested by in situ hybridization, but only CgW4 produced positive hybridization signals. Clone sequence analysis recovered seven distinct sequences, of which six did not reveal any similarity to other known sequences in the GenBank or GIRI databases. Only CgW9 clone sequence was recognized as probably derived from a Helitron-transposon similar to that found in the genome of the zebrafish Danio rerio. Our results show that the composition of Characidium’s W chromosome does seem rich in repetitive sequences as well as other W chromosomes found in several species with a ZW sex-determining mechanism.

[1] Bugrov A.G., Karamysheva T.V., Rubtsov D.N., Andreenkova O.V. & Rubtsov N.B. 2004. Comparative FISH analysis of distribution of B chromosome repetitive DNA in A and B chromosomes in two subspecies of Podisma sapporensis (Orthoptera, Acrididae). Cytogenet. Genome Res. 106: 284–288. DOI: 10.1159/000079300 http://dx.doi.org/10.1159/00007930010.1159/000079300Search in Google Scholar PubMed

[2] Camacho J.P., Schmid M. & Cabrero J.B. 2011. B Chromosomes and sex in animals. Sex. Dev. 5: 155–166. DOI: 10.1159/000324930 http://dx.doi.org/10.1159/00032493010.1159/000324930Search in Google Scholar PubMed

[3] Cermak T., Kubat Z., Hobza R., Koblizkova A., Widmer A., Macas J., Vyskotand B. & Kejnovsky E. 2008. Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Res. 16: 961–976. DOI: 10.1007/s10577-008-1254-2 http://dx.doi.org/10.1007/s10577-008-1254-210.1007/s10577-008-1254-2Search in Google Scholar PubMed

[4] Charlesworth D., Charlesworth B. & Marais G. 2005. Steps in the evolution of heteromorphic sex chromosomes. Heredity 95: 118–128. DOI: 10.1038/sj.hdy.6800697 http://dx.doi.org/10.1038/sj.hdy.680069710.1038/sj.hdy.6800697Search in Google Scholar PubMed

[5] Cioffi M.B., Camacho J.P.M. & Bertollo L.A.C. 2011. Repetitive DNAs and differentiation of sex chromosomes in Neotropical fishes. Cytogenet. Genome Res. 132: 188–194. DOI: 10.1159/000321571 http://dx.doi.org/10.1159/00032157110.1159/000321571Search in Google Scholar PubMed

[6] Cioffi M.B., Moreira-Filho O., Almeida-Toledo L.F. & Bertollo L.A.C. 2012. The contrasting role of heterochromatin in the differentiation of sex chromosomes: an overview from Neotropical fishes. J. Fish Biol. 80: 2125–2139. DOI: 10.1111/j.1095-8649.2012.03272.x http://dx.doi.org/10.1111/j.1095-8649.2012.03272.x10.1111/j.1095-8649.2012.03272.xSearch in Google Scholar PubMed

[7] Ferreira D.C. Porto-Foresti F., Oliveira C. & Foresti F. 2011. Transposable elements as a potential source for understanding the fish genome. Mobile Genetic Elements 1: 1–6. DOI: 10.4161/mge.1.2.16731 http://dx.doi.org/10.4161/mge.1.1.1532010.4161/mge.1.2.16731Search in Google Scholar PubMed PubMed Central

[8] Foresti F., Almeida-Toledo L.F. & Toledo S.A. 1981. Polymorphic nature of nucleolus organizer regions in fishes. Cytogenet. Cell Genet. 31(3): 137–144. PMID: 6173166 http://dx.doi.org/10.1159/00013163910.1159/000131639Search in Google Scholar PubMed

[9] Fuková I., Traut W., Vítková M., Nguyen P., Kubíčková S. & Marec F. 2007. Probing the W chromosome of the codling moth, Cydia pomonella, with sequences from microdissected sex chromatin. Chromosoma 116: 135–145. DOI: 10.1007/s00412-006-0086-0 http://dx.doi.org/10.1007/s00412-006-0086-010.1007/s00412-006-0086-0Search in Google Scholar PubMed

[10] Green D.M., Zeyl C.W. & Sharbel T.F. 1993. The evolution of hypervariable sex and supernumerary (B) chromosomes in the relict New Zealand frog, Leiopelma hochstetteri. J. Evol. Biol. 6: 417–441. DOI: 10.1046/j.1420-9101.1993.6030417.x http://dx.doi.org/10.1046/j.1420-9101.1993.6030417.x10.1046/j.1420-9101.1993.6030417.xSearch in Google Scholar

[11] Jesus C.M., Galetti P.M., Valentini S.R. & Moreira-Filho O. 2003. Molecular characterization and chromosomal localization of two families of satellite DNA in Prochilodus lineatus (Pisces, Prochilodontidae), a species with B chromosomes. Genetica 118: 25–32. DOI: 10.1023/A:1022986816648 http://dx.doi.org/10.1023/A:102298681664810.1023/A:1022986816648Search in Google Scholar

[12] Kejnovsky E., Hobza R., Cermák T., Kubát Z. & Vyskot B. 2009. The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity 102: 533–541. DOI: 10.1038/hdy.2009.17 http://dx.doi.org/10.1038/hdy.2009.1710.1038/hdy.2009.17Search in Google Scholar PubMed

[13] Machado T.C., Pansonato-Alves J.C., Pucci M.B., Nogaroto V., Almeida M.C., Oliveira C., Foresti F., Bertollo L.A.C., Moreira-Filho O., Artoni R.F. & Vicari M.R. 2011. Chromosomal painting and ZW sex chromosomes differentiation in Characidium (Characiformes, Crenuchidae). BMC Genet. 12: 65. DOI: 10.1186/1471-2156-12-65 http://dx.doi.org/10.1186/1471-2156-12-6510.1186/1471-2156-12-65Search in Google Scholar PubMed PubMed Central

[14] Matsubara K., Tarui H., Toriba M., Yamada K., Umehara C.N. Agata K. & Matsuda Y. 2006. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and stepwise differentiation of snake sex chromosomes. Proc. Natl. Acad. Sci. USA 103: 18190–18195. DOI: 10.1073/pnas.0605274103 http://dx.doi.org/10.1073/pnas.060527410310.1073/pnas.0605274103Search in Google Scholar PubMed PubMed Central

[15] Mestriner C.A., Galetti P.M., Valentini S.R., Ruiz, I.R.G., Abel L.D.S., Moreira-Filho O. & Camacho J.P.M. 2000. Structural and functional evidence that a B chromosome in the characid fish Astyanax scabripinnis is an isochromosome. Heredity 85: 1–9. DOI: 10.1046/j.1365-2540.2000.00702.x http://dx.doi.org/10.1046/j.1365-2540.2000.00702.x10.1046/j.1365-2540.2000.00702.xSearch in Google Scholar PubMed

[16] Nakayama I., Foresti F., Tewari R., Schartl M. & Chourrout D. 1994. Sex chromosome polymorphism and heterogametic males revealed by two cloned DNA probes in the ZW/ZZ fish Leporinus elongatus. Chromosoma 103: 31–39. DOI: 10.1007/BF00364723 http://dx.doi.org/10.1007/BF0036472310.1007/BF00364723Search in Google Scholar PubMed

[17] Nanda I., Feichtinger W., Schmid M., Schröder J.H., Zischler H. & Epplen, J.T. 1990. Simple repetitive sequences are associated with differentiation of the sex chromosomes in the guppy fish. J. Mol. Evol. 30: 456–462. DOI: 10.1007/BF02101117 http://dx.doi.org/10.1007/BF0210111710.1007/BF02101117Search in Google Scholar

[18] Nanda I., Volff J.N., Weis S., Korting C., Froschauer A., Schimid M. & Schartl M. 2000. Amplification of a long terminal repeat-like element on the Y chromosome of the platyfish, Xiphophorus maculatus. Chromosoma 109: 173–180. DOI: 10.1007/s004120050425 http://dx.doi.org/10.1007/s00412005042510.1007/s004120050425Search in Google Scholar PubMed

[19] Pansonato-Alves J.C., Vicari M.R., Oliveira C. & Foresti F. 2011. Chromosomal diversification in populations of Characidium cf. gomesi (Teleostei: Crenuchidae). J. Fish Biol. 78: 183–194. DOI: 10.1111/j.1095-8649.2010.02847.x. http://dx.doi.org/10.1111/j.1095-8649.2010.02847.x10.1111/j.1095-8649.2010.02847.xSearch in Google Scholar PubMed

[20] Parise-Maltempi P.P., Martins C., Oliveira C. & Foresti F. 2007. Identification of a new repetitive element in the sex chromosomes of Leporinus elongatus (Teleostei: Characiformes: Anostomidae): new insights into the sex chromosomes of Leporinus. Cytogenet. Genome Res. 116: 218–223. DOI: 10.1159/000098190 http://dx.doi.org/10.1159/00009819010.1159/000098190Search in Google Scholar PubMed

[21] Pazian M.F., Shimabukuro-Dias C.K., Pansonato-Alves J.C., Oliveira C. & Foresti F. 2013. Chromosome painting of Z and W sex chromosomes in Characidium (Characiformes, Crenuchidae). Genetica 141: 1–9. DOI: 10.1007/s10709-013-9701-1. http://dx.doi.org/10.1007/s10709-013-9701-110.1007/s10709-013-9701-1Search in Google Scholar PubMed

[22] Pinkel D., Straume T. & Gray J.W. 1986. Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. USA 83: 2934–2938. PMCID: PMC323421 http://dx.doi.org/10.1073/pnas.83.9.293410.1073/pnas.83.9.2934Search in Google Scholar PubMed PubMed Central

[23] Poulter R.T., Goodwin T.J. & Butler M.I. 2003. Vertebrate helentrons and other novel Helitrons. Gene 313: 201–212. DOI: 10.1016/S0378-1119(03)00679-6 http://dx.doi.org/10.1016/S0378-1119(03)00679-610.1016/S0378-1119(03)00679-6Search in Google Scholar

[24] Rubtsov N.B., Karamysheva T.V., Andreenkova O.V., Bochkaerev M.N., Kartavtseva I.V., Roslik G.V. & Borissov Y.M. 2004. Comparative analysis of micro and macro B chromosomes in the Korean field mouse Apodemus peninsulae (Rodentia, Murinae) performed by chromosome microdissection and FISH. Cytogenet Genome Res. 106: 289–294. DOI: 10.1159/000079301 http://dx.doi.org/10.1159/00007930110.1159/000079301Search in Google Scholar PubMed

[25] Sharbel T.F., Green D.M. & Houben A. 1998. B-chromosome origin in the endemic New Zealand frog Leiopelma hochstetteri through sex chromosome evolution. Genome 41(1): 14–22. DOI: 10.1139/g97-091 http://dx.doi.org/10.1139/gen-41-1-1410.1139/g97-091Search in Google Scholar

[26] Steinemann M. & Steinemann S. 1992. Degenerating Y chromosome of Drosophila miranda: a trap for retrotransposons. Proc. Natl. Acad. Sci. USA 89: 7591–7595. DOI: 10.1073/pnas.89.16.7591 http://dx.doi.org/10.1073/pnas.89.16.759110.1073/pnas.89.16.7591Search in Google Scholar PubMed PubMed Central

[27] Sumner A.T. 1972. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75: 304–306. DOI: 10.1016/0014-4827(72)90558-7 http://dx.doi.org/10.1016/0014-4827(72)90558-710.1016/0014-4827(72)90558-7Search in Google Scholar PubMed

[28] Takehana Y., Naruse K., Asada Y., Matsuda Y., Shin I.T., Kohara Y., Fujiyama A., Hamaguchi S. & Sakaizumi M. 2012. Molecular cloning and characterization of the repetitive DNA sequences that comprise the constitutive heterochromatin of the W chromosomes of medaka fishes. Chromosome Res. 20: 71–81. DOI: 10.1007/s10577-011-9259-7 http://dx.doi.org/10.1007/s10577-011-9259-710.1007/s10577-011-9259-7Search in Google Scholar PubMed

[29] Teruel M., Cabrero J., Montiel E.E., Acosta M.J., Sánchez A. & Camacho J.P.M. 2009. Microdissection and chromosome painting of X and B chromosomes in Locusta migratoria. Chromosome Res. 17: 11–18. DOI: 10.1007/s10577-008-9001-2 http://dx.doi.org/10.1007/s10577-008-9001-210.1007/s10577-008-9001-2Search in Google Scholar PubMed

[30] Vicari M.R., Artoni R.F., Moreira-Filho O. & Bertollo L.A.C. 2008. Diversification of a ZZ/ZW sex chromosome system in Characidium fish (Crenuchidae, Characiformes). Genetica 134: 311–317. DOI: 10.1007/s10709-007-9238-2 http://dx.doi.org/10.1007/s10709-007-9238-210.1007/s10709-007-9238-2Search in Google Scholar PubMed

[31] Vicente V.E., Bertollo L.A.C., Valentini, S.R. & Moreira-Filho O. 2003. Origin and differentiation of sex chromosome system in Parodon hilarii (Pisces, Parodontidae) satellite DNA, G and C-banding. Genetica 119: 115–120. DOI: 10.1023/A:1026082904672 http://dx.doi.org/10.1023/A:102608290467210.1023/A:1026082904672Search in Google Scholar

[32] Volff J.N., Nanda I., Schmid M. & Schartl M. 2007. Governing sex determination in fgish: Regulatory putsches and ephemeral dictators. Sex. Dev. 1: 85–99. DOI: 10.1159/000100030 http://dx.doi.org/10.1159/00010003010.1159/000100030Search in Google Scholar PubMed

[33] Yoshida K., Terai Y., Mizoiri S., Aibara M., Nishihara H., Watanabe M., Kuroiwa A., Hirai H., Hirai Y., Matsuda Y. & Okada N. 2011. B Chromosomes have a functional effect on female sex determination in Lake Victoria cichlid fishes. PLoS Genet. 7: e1002203. DOI: 10.1371/journal.pgen.1002203 http://dx.doi.org/10.1371/journal.pgen.100220310.1371/journal.pgen.1002203Search in Google Scholar PubMed PubMed Central

[34] Zhou Q., Froschauer A., Schultheis C., Schmidt C., Bienert G.P., Wenning M., Dettai A. & Volff J.N. 2006. Helitron transposons on the sex chromosomes of the platyfish Xiphophorus maculatus and their evolution in animal genomes. Zebrafish 3: 39–52. DOI: 10.1089/zeb.2006.3.39 http://dx.doi.org/10.1089/zeb.2006.3.3910.1089/zeb.2006.3.39Search in Google Scholar PubMed

Published Online: 2014-11-7
Published in Print: 2014-10-1

© 2014 Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11756-014-0434-0/html
Scroll to top button