Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 18, 2011

A literature review on computational models for laminated composite and sandwich panels

  • Ireneusz Kreja EMAIL logo
From the journal Open Engineering

Abstract

The present paper is devoted to a state-of-the-art review on the computational treatment of laminated composite and sandwich panels. Over two hundred texts have been included in the survey with the focus put on theoretical models for multilayered plates and shells, and FEM implementation of various computational concepts. As a result of the review, one could notice a lack of a single numerical model capable for a universal representation of all layered composite and sandwich panels. Usually, with the increase of the range of rotations considered in the particular model, one can observe the decrease of the degree of complexity of the through-the-thickness representation of deformation profiles.

[1] Jones R. M., Mechanics of composite materials, Second Editions, Taylor & Francis, Inc., Philadelphia, PA, 1999 Search in Google Scholar

[2] Vinson J. R., Chou T.-W., Composite Materials and Their Use in Structures, Applied Science Publishers Ltd, London, 1975 Search in Google Scholar

[3] Vasiliev V. V., Morozov E. V., Mechanics and Analysis of Composite Materials, Elsevier Science Ltd, Oxford 2001 Search in Google Scholar

[4] Halle D. K., Kelly A., Strength of fibrous composite materials, Annual Review of Materials Science 2, 1972, 405–462 10.1146/annurev.ms.02.080172.002201Search in Google Scholar

[5] Chou T.-W., Kelly A., Mechanical properties of composites, Annual Review of Materials Science 10, 1980, 22–59 10.1146/annurev.ms.10.080180.001305Search in Google Scholar

[6] Tong L., Mouritz A. P., Bannister M. K., 3D Fibre Reinforced Polymer Composites, Elsevier Science Ltd., Oxford 2002 10.1016/B978-008043938-9/50017-XSearch in Google Scholar

[7] Librescu L., Hause T., Recent developments in the modeling and behavior of advanced sandwich constructions: a survey, Composite Structures 48, 2000, 1–17 10.1016/S0263-8223(99)00068-9Search in Google Scholar

[8] Hohe J., Becker W., Effective stress-strain relations for two-dimensional cellular sandwich cores: Homogenization, material models, and properties, Applied Mechanics Review 55, 2002, 61–87 10.1115/1.1425394Search in Google Scholar

[9] Hohe J., Librescu L., Advances in the Structural Modeling of Elastic Sandwich Panels, Mechanics of Advanced Materials & Structures 11, 2004, 395–424 10.1080/15376490490451561Search in Google Scholar

[10] Reddy J.N., On laminated composite plates with integrated sensors and actuators, Engineering Structures 21, 1999, 568–593 10.1016/S0141-0296(97)00212-5Search in Google Scholar

[11] Reddy J.N., Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, FL, Second Edition, 2004 10.1201/b12409Search in Google Scholar

[12] Hachenberg D., The Role of Advanced Numerical Methods in the Design and Certification of Future Composite Aircraft Structures, WCCM V: Proceedings of the Fifth World Congress on Computational Mechanics, July 7–12, 2002, Vienna, Austria, H.A. Mang, F.G. Rammerstorfer & J. Eberhardsteiner (eds.), CD-ROM, Vienna 2002 10.1515/arh-2002-0027Search in Google Scholar

[13] Guz A. N. (ed.), Micromechanics of composite materials: Focus on Ukrainian Research, Applied Mechanics Review 45, 1992, 13–101 10.1115/1.3119745Search in Google Scholar

[14] Pagano N. J., Yuan, F. G., The significance of effective modulus theory (homogenization) in composite laminate mechanics, Composites Science and Technology 60, 2000, 2471–2488 10.1016/S0266-3538(00)00042-7Search in Google Scholar

[15] Takano N., Ohnishi Y., Zako M., Nishiyabu K., The formulation of homogenization method applied to large deformation problem for composite materials, Int. Journal of Solids & Structures 37, 2000, 6517–6535 10.1016/S0020-7683(99)00284-XSearch in Google Scholar

[16] Schmauder S., Computational Mechanics, Annual Review of Materials Research 32, 2002, 437–465 10.1146/annurev.matsci.32.103101.153157Search in Google Scholar

[17] Pahr D. H., Rammerstorfer F. G., A fast multi-scale analyzing tool for the investigation of perforated laminates, Computers & Structures 82, 2004, 227–239 10.1016/j.compstruc.2003.10.010Search in Google Scholar

[18] Ladevéze P., Multiscale Modeling and Computational Strategies for Composites, WCCM V: Proceedings of the Fifth World Congress on Computational Mechanics, July 7–12, 2002, Vienna, Austria, H.A. Mang, F.G. Rammerstorfer & J. Eberhardsteiner (eds.), CD-ROM, Vienna 2002 10.1515/arh-2002-0027Search in Google Scholar

[19] Böhm H. J. (Ed.), Mechanics of Microstructured Materials, CISM Courses and Lectures No. 464, Springer-Verlag, Vienna 2004 10.1007/978-3-7091-2776-6Search in Google Scholar

[20] Zhang W. C., Evans K. E., Numerical prediction of the mechanical properties of anisotropic composite materials, Computers & Structures 29, 1988, 413–422 10.1016/0045-7949(88)90394-XSearch in Google Scholar

[21] Noor A. K. & Burton W. S., Assessment of computational models for multilayered composite shells, Applied Mechanics Reviews 43, 1990, 67–97 10.1115/1.3119162Search in Google Scholar

[22] Kulikov G. M., Non-linear analysis of multilayered shells under initial stress, Int. Journal of Non-Linear Mechanics 36, 2001, 323–334 10.1016/S0020-7462(00)00017-2Search in Google Scholar

[23] Carrera E., Developments, ideas, and evaluations based upon Reissner’s Mixed Variational Theorem in the modeling of multilayered plates and shells, Applied Mechanics Reviews 54, 2001, 301–329 10.1115/1.1385512Search in Google Scholar

[24] Reddy J. N., On refined computational models of composite laminates, Int. Journal for Numerical Methods in Engineering 27, 1989, 361–382 10.1002/nme.1620270210Search in Google Scholar

[25] Rohwer K., Friedrichs S., Wehmeyer C., Analyzing laminated structures from fibre-reinforced composite material — an assessment, Technische Mechanik 25, 2005, 59–79 Search in Google Scholar

[26] Başar Y., Ding Y., Interlaminar stress analysis of composites: layer-wise shell finite elements including transverse strains, Composites Engineering 5, 1995, 485–499 10.1016/0961-9526(95)00020-NSearch in Google Scholar

[27] Carrera E., An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates, Composite Structures 50, 2000, 183–198 10.1016/S0263-8223(00)00099-4Search in Google Scholar

[28] Carrera E., Demasi L., Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 1: Derivation of finite element matrices, Int. Journal for Numerical Methods in Engineering 55, 2002, 191–231 10.1002/nme.492Search in Google Scholar

[29] Carrera E., Demasi, L., Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 2: Numerical implementations, Int. Journal for Numerical Methods in Engineering 55, 2002, 253–291 10.1002/nme.493Search in Google Scholar

[30] Chen C.-M., Kikuchi N., Farzad R.-A., An enhanced asymptotic homogenization method of the static and dynamics of elastic composite laminates, Computers & Structures 82, 2004, 373–382 10.1016/j.compstruc.2003.10.021Search in Google Scholar

[31] Lewinsk, T., On recent developments in the homogenization theory of elastic plates and their application to optimal design: Part I, Structural Optimization 6, 1993, 59–64 10.1007/BF01743175Search in Google Scholar

[32] Rabczuk T., Kim J.Y., Samaniego E., Belytschko T., Homogenization of sandwich structures, Int. Journal for Numerical Methods in Engineering 61, 2004, 1009–1027 10.1002/nme.1100Search in Google Scholar

[33] Tanov R. and Tabiei A., A note on finite element implementation of sandwich shell homogenization, Int. Journal for Numerical Methods in Engineering 48, 2000, 467–473 10.1002/(SICI)1097-0207(20000530)48:3<467::AID-NME882>3.0.CO;2-KSearch in Google Scholar

[34] Ambartsumyan S. A., Theory of Anisotropic Plates, Technomic Publishing Co., Inc., Stamford, 1970 Search in Google Scholar

[35] Sun C.T., Chin, H., Analysis of asymmetric composite laminates, AIAA Journal 26, 1988, 714–718 10.2514/3.9957Search in Google Scholar

[36] Saigal S., Kapania R. K., Yang T. Y., Geometrically nonlinear finite element analysis of imperfect laminated shells, Journal Composite Materials 20, 1986, 197–214 10.1177/002199838602000206Search in Google Scholar

[37] Whitney J. M., Pagano, N. J., Shear deformation in heterogeneous anisotropic plates, Journal of Applied Mechanics, Trans. ASME 37, 1970, 1031–1036 10.1115/1.3408654Search in Google Scholar

[38] Dong S. B., Tso F. K. W., On a laminated orthotropic shell theory including transverse shear deformation, Journal of Applied Mechanics, Trans. ASME 39, 1972, 1091–1096 10.1115/1.3422834Search in Google Scholar

[39] Reddy J. N., Arciniega R. A., Shear deformation plate and shell theories: From Stavsky to Present, Mechanics of Advanced Materials and Structures 11, 2004, 535–582 10.1080/15376490490452777Search in Google Scholar

[40] Ghugal Y. M., Shimpi R. P., A review of refined shear deformation theories of isotropic and anisotropic laminated plates, Journal of Reinforced Plastics and Composites 21, 2002, 775–813 10.1177/073168402128988481Search in Google Scholar

[41] Reissner E., Small bending and stretching of sandwich-type shells, NACA Report No. 975, 1950, 483–508 Search in Google Scholar

[42] Chandrashekhara K., Pavan Kumar D. V. T. G., Assessment of shell theories for the static analysis of cross-ply laminated circular cylindrical shells, Thin-Walled Structures 22, 1995, 291–318 10.1016/0263-8231(94)00039-3Search in Google Scholar

[43] Chandrashekhara K., Pavan Kumar D. V. T. G., Static response of composite circular cylindrical shells studied by different theories, Meccanica 33, 1998, 11–27 Search in Google Scholar

[44] Tarn J.-Q., Wang Y.-B., A refined asymptotic theory and computational model for multilayered composite plates, Computer Methods in Applied Mechanics & Engineering 145, 1997, 167–184 10.1016/S0045-7825(96)01192-9Search in Google Scholar

[45] Reddy J. N., Chandrashekhara K., Nonlinear analysis of laminated shells including transverse shear strains, AIAA Journal 23, 1985, 440–441 10.2514/3.8932Search in Google Scholar

[46] Schmidt R., Reddy J. N., A refined small strain and moderate rotation theory of elastic anisotropic shells, Journal of Applied Mechanics, Trans. ASME 55, 1988, 611–617 10.1115/1.3125837Search in Google Scholar

[47] Palmerio A. F., Reddy J. N., Schmidt R., On a moderate rotation theory of elastic anisotropic shells — Part 1. Theory, Int. Journal of Non-Linear Mechanics 25, 1990, 687–700 10.1016/0020-7462(90)90007-VSearch in Google Scholar

[48] Kreja I., Schmidt R., Reddy J. N., Finite elements based on a first-order shear deformation moderate rotation shell theory with applications to the analysis of composite structures, Int. Journal Non-Linear Mechanics 32, 1997, 1123–1142 10.1016/S0020-7462(96)00124-2Search in Google Scholar

[49] Whitney J. M., Shear correction factors for orthotropic laminates under static load, Journal of Applied Mechanics, Trans. ASME 40, 1973, 302–303 10.1115/1.3422950Search in Google Scholar

[50] Wittrick W. H., Analytical, three-dimensional elasticity solutions to some plate problems, and some observations on Mindlin’s plate theory, Int. Journal of Solids & Structures 23, 1987, 441–464 10.1016/0020-7683(87)90010-2Search in Google Scholar

[51] Vlachoutsis S., Shear correction factors for plates and shells, Int. Journal for Numerical Methods in Engineering 33, 1992, 1537–1552 10.1002/nme.1620330712Search in Google Scholar

[52] Jemielita G., Coefficients of shear correction in transversely nonhomogeneous moderately thick plates, Journal of Theoretical and Applied Mechanics (Polish Society of Theoretical and Applied Mechanics) 40, 2002, 73–84 Search in Google Scholar

[53] Noor A. K., Peters J. M., A posteriori estimates for shear correction factors in multilayered composite cylinders, Journal of Engineering Mechanics ASCE 115, 1988, 1225–1244 10.1061/(ASCE)0733-9399(1989)115:6(1225)Search in Google Scholar

[54] Sze K. Y., He L.-W., Cheung Y. K., Predictorcorrector procedures for analysis of laminated plates using standard Mindlin finite element models, Composite Structures 50, 2000, 171–182 10.1016/S0263-8223(00)00095-7Search in Google Scholar

[55] Auricchio F., Sacco E., Partial-mixed formulation and refined models for the analysis of composite laminates within an FSDT, Composite Structures 46, 1999, 103–113 10.1016/S0263-8223(99)00035-5Search in Google Scholar

[56] Auricchio F., Sacco E., A mixed-enhanced finite-element for the analysis of laminated composite plates, Int. Journal for Numerical Methods in Engineering 44, 1999, 1481–1504 10.1002/(SICI)1097-0207(19990410)44:10<1481::AID-NME554>3.0.CO;2-QSearch in Google Scholar

[57] Pai P. F., A new look at shear correction factors and warping functions of anisotropic laminates, Int. Journal of Solids & Structures 32, 1995, 2295–2313 10.1016/0020-7683(94)00258-XSearch in Google Scholar

[58] Rolfes R., Rohwer K., Improved transverse shear stresses in composite finite elements based on First Order Shear Deformation Theory, Int. Journal for Numerical Methods in Engineering 40, 1997, 51–60 10.1002/(SICI)1097-0207(19970115)40:1<51::AID-NME49>3.0.CO;2-3Search in Google Scholar

[59] MSC/NASTRAN Encyclopedia for Version 69, Mac Neal-Schwendler Corp., 1996 Search in Google Scholar

[60] Altenbach H., An alternative determination of transverse shear stiffnesses for sandwich and laminated plates, Int. Journal of Solids & Structures 37, 2000, 3503–3520 10.1016/S0020-7683(99)00057-8Search in Google Scholar

[61] Tanov R., Tabiei A., A simple correction to the first-order shear deformation shell finite element formulations, Finite Elements in Analysis and Design 35, 2000, 189–197 10.1016/S0168-874X(99)00069-4Search in Google Scholar

[62] Reissner E., A consistent treatment of transverse shear deformations in laminated anisotropic plates, AIAA Journal 10, 1972, 716–718 10.2514/3.50194Search in Google Scholar

[63] Fares M. E., Youssif Y. G., A refined equivalent single-layer model of geometrically non-linear doubly curved layered shells using mixed variational approach, Int. Journal Non-Linear Mechanics 36, 2001, 117–124 10.1016/S0020-7462(99)00091-8Search in Google Scholar

[64] Fares M. E., Zenkour A. M., El-Marghany M. Kh., Non-linear thermal effects on the bending response of cross-ply laminated plates using refined first-order theory, Composite Structures 49, 2000, 257–267 10.1016/S0263-8223(99)00137-3Search in Google Scholar

[65] Auricchio F., Sacco E., Refined First-Order Shear Deformation Theory models for composite laminates, Journal of Applied Mechanics, Trans. ASME 70, 2003, 381–390 10.1115/1.1572901Search in Google Scholar

[66] Qi Y., Knight Jr. N. F., A refined first-order shear deformation theory and its justification by plane-strain bending problem of laminated plates, Int. Journal of Solids & Structures 33, 1996, 49–64 10.1016/0020-7683(95)00010-8Search in Google Scholar

[67] Knight Jr. N. F., Qi, Y., On a consistent first-order shear deformation theory for laminated plates, Composites, Part B 28B, 1997, 397–405. 10.1016/S1359-8368(96)00058-3Search in Google Scholar

[68] Reddy J. N., A simple higher-order theory for laminated composite plates, Journal of Applied Mechanics, Trans. ASME 51, 1984, 745–752 10.1115/1.3167719Search in Google Scholar

[69] Khdeir A. A., Reddy J. N., Librescu L., Analytical solution of a refined shear deformation theory for rectangular composite plates, Int. Journal of Solids & Structures 23, 1987, 1447–1463 10.1016/0020-7683(87)90009-6Search in Google Scholar

[70] Phan N. D., Reddy J. N., Analysis of laminated composite plates using a higher-order shear deformation theory, Int. Journal for Numerical Methods in Engineering 21, 1985, 2201–2219. 10.1002/nme.1620211207Search in Google Scholar

[71] Reddy J. N., On the generalization of displacement-based laminate theories, Applied Mechanics Reviews 42, 1989, S213–S222 10.1115/1.3152393Search in Google Scholar

[72] Reddy J. N., Liu, C. F., A higher-order shear deformation theory of laminated elastic shells, Int. Journal of Engineering Sciences 23, 1985, 669–683 10.1016/0020-7225(85)90051-5Search in Google Scholar

[73] Bose P., Reddy J. N., Analysis of composite plates using various plate theories Part 1: Formulation and Analytical Solutions, Structural Engineering & Mechanics 6, 1998, 583–612 10.12989/sem.1998.6.6.583Search in Google Scholar

[74] Reddy J. N., A general non-linear third-order theory of plates with moderate thickness, Int. Journal of Non-Linear Mechanics 25, 1990, 677–686 10.1016/0020-7462(90)90006-USearch in Google Scholar

[75] Dennis S. T., A Galerkin solution to geometrically nonlinear laminated shallow shell equations, Computers & Structures 63, 1997, 859–874 10.1016/S0045-7949(96)00380-XSearch in Google Scholar

[76] Simitses G. J., Buckling of moderately thick laminated cylindrical shells: A review, Composites Part B 27B, 1996, 581–587 10.1016/1359-8368(95)00013-5Search in Google Scholar

[77] Başar Y., Finite-rotation theories for composite laminates, Acta Mechanica 98, 1993, 159–176 10.1007/BF01174300Search in Google Scholar

[78] Başar Y., Ding Y., Schultz R., Refined shear-deformation models for composite laminates with finite rotations, Int. Journal of Solids & Structures 30, 1993, 2611–2638 10.1016/0020-7683(93)90102-DSearch in Google Scholar

[79] Balah M., Al-Ghamedy H. N., Finite element formulation of a third order laminated finite rotation shell element, Computers & Structures 80, 2002, 1975–1990 10.1016/S0045-7949(02)00222-5Search in Google Scholar

[80] Simo J. C., Fox D. D., Rifai M. S., On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory, Computer Methods in Applied Mechanics & Engineering 79, 1990, 21–70 10.1016/0045-7825(90)90094-3Search in Google Scholar

[81] Dennis S. T., Palazotto A. N., Transverse shear deformation in orthotropic cylindrical pressure vessels using a higher-order shear theory, AIAA Journal 27, 1989, 1441–1447 10.2514/3.10283Search in Google Scholar

[82] Dennis S. T., Palazotto A. N., Large displacement and rotational formulation for laminated shells including parabolic transverse shear, Int. Journal of Non-Linear Mechanics 25, 1990, 67–85 10.1016/0020-7462(90)90039-CSearch in Google Scholar

[83] Naboulsi S. K., Palazotto A. N., Non-linear staticdynamic finite element formulation for composite shells, Int. Journal of Non-Linear Mechanics 38, 2003, 87–110 10.1016/S0020-7462(01)00049-XSearch in Google Scholar

[84] Tsai C. T., Palazotto A. N., Dennis S. T., Largerotation snap-through buckling in laminated cylindrical panels, Finite Elements in Analysis and Design 9, 1991, 65–75 10.1016/0168-874X(91)90019-USearch in Google Scholar

[85] Sacco E., Reddy J.N., On first- and second-order moderate rotation theories of laminated plates, Int. Journal for Numerical Methods in Engineering 33, 1992, 1–17 10.1002/nme.1620330102Search in Google Scholar

[86] Moita J. S., Mota Soares C. M., Mota Soares C. A., Buckling behaviour of laminated composite structures using a discrete higher-order displacement model, Composite Structures 35, 1996, 75–92 10.1016/0263-8223(96)00025-6Search in Google Scholar

[87] Piskunov V. G., An iterative analytical theory in the mechanics of layered composite systems, Mechanics of Composite Materials 39, 2003, 1–16 10.1023/A:1022979003150Search in Google Scholar

[88] Librescu L., Refined geometrically non-linear theories of anisotropic laminated shells, Quarterly of Applied Mathematics 45, 1987, 1–22 10.1090/qam/885164Search in Google Scholar

[89] Pagano N. J., Hatfield S.J., Elastic behavior of multilayered bidirectional composites, AIAA Journal 10, 1972, 931–933 10.2514/3.50249Search in Google Scholar

[90] Brank B., On composite shell models with piecewise linear warping function, Composite Structures 59, 2003, 163–171 10.1016/S0263-8223(02)00240-4Search in Google Scholar

[91] Brank B., Carrera E., A family of shear-deformable shell finite elements for composite structures, Computers & Structures 76, 2000, 287–297 10.1016/S0045-7949(99)00153-4Search in Google Scholar

[92] Brank B., Carrera E., Multilayered shell finite element with interlaminar continuous stresses: a refinement of the Reissner-Mindlin formulation, Int. Journal for Numerical Methods in Engineering 48, 2000, 843–874 10.1002/(SICI)1097-0207(20000630)48:6<843::AID-NME903>3.0.CO;2-ESearch in Google Scholar

[93] Carrera E., On the use of the Murakami’s zig-zag function in the modeling of layered plates and shells, Computers & Structures 82, 2004, 541–554 10.1016/j.compstruc.2004.02.006Search in Google Scholar

[94] Carrera E., Historical review of zig-zag theories for multilayered plates and shells, Applied Mechanics Reviews 56, 2003, 287–308 10.1115/1.1557614Search in Google Scholar

[95] Di Sciuva M., An improved shear deformation theory of moderately thick multilayered anisotropic shells and plates, Journal of Applied Mechanics, Trans. ASME 54, 1987, 589–596 10.1115/1.3173074Search in Google Scholar

[96] Toledano A., Murakami H., A composite plate theory for arbitrary laminate configurations, Journal of Applied Mechanics, Trans. ASME 54, 1987, 181–189 10.1115/1.3172955Search in Google Scholar

[97] Di Sciuva M., A third-order triangular multilayered plate finite element with continuous interlaminar stresses, Int. Journal for Numerical Methods in Engineering 38, 1995, 1–26 10.1002/nme.1620380102Search in Google Scholar

[98] Di S., Rothert H., A solution of laminated cylindrical shell using an unconstrained third-order theory, Composite Structures 32, 1995, 667–680 10.1016/0263-8223(95)00064-XSearch in Google Scholar

[99] Di S., Rothert H., Solution of laminated cylindrical shell using an unconstrained third-order theory, Computers & Structures 69, 1998, 291–303 10.1016/S0045-7949(98)00137-0Search in Google Scholar

[100] Lee K. H., Senthilnathan N. R., Lim S. P., Chow T., An improved zig-zag model for the bending of laminated composite plates, Composite Structures 15, 1990, 137–148 10.1016/0263-8223(90)90003-WSearch in Google Scholar

[101] Toledano A., Murakami H., A High-Order Laminated Plate Theory with Improved In-Plane Responses, Int. Journal of Solids & Structures 23, 1987, 111–131 10.1016/0020-7683(87)90034-5Search in Google Scholar

[102] Carrera E., C0 Reissner-Mindlin multilayered plate elements including zig-zag and interlaminar stress continuity, Int. Journal for Numerical Methods in Engineering 39, 1996, 1797–1820 10.1002/(SICI)1097-0207(19960615)39:11<1797::AID-NME928>3.0.CO;2-WSearch in Google Scholar

[103] Savithri S., Varadan T. K., Large deflection analysis of laminated composite plates, Int. Journal Non-Linear Mechanics 28, 1993, 1–12 10.1016/0020-7462(93)90002-3Search in Google Scholar

[104] Librescu L., Schmidt R., Substantiation of a shear-deformable theory of anisotropic composite laminated shells accounting for the interlaminar continuity conditions, Int. Journal of Engineering Science 29, 1991, 669–683 10.1016/0020-7225(91)90097-MSearch in Google Scholar

[105] Schmidt R., Librescu L., Further results concerning the refined theory of anisotropic laminated composite plates, Journal of Engineering Mathematics 28, 1994, 407–425 10.1007/BF00058463Search in Google Scholar

[106] He L.-H., Non-linear theory of laminated shells accounting for continuity conditions of displacements and tractions at layer interfaces, Int. Journal of Mechanical Sciences 37, 1995, 161–173 10.1016/0020-7403(94)E0011-7Search in Google Scholar

[107] Shu X.-P., A refined theory of laminated shells with higher-order transverse shear deformation, Int. Journal of Solids & Structures 34, 1997, 673–683 10.1016/S0020-7683(96)00048-0Search in Google Scholar

[108] Lee K. H., Cao L., A predictor-corrector zig-zag model for the bending of laminated composite plates, Int. Journal of Solids & Structures 33, 1996, 879–897 10.1016/0020-7683(95)00079-PSearch in Google Scholar

[109] Soldatos K. P., Watson P., A method for improving the stress analysis performance of one- and two-dimensional theories for laminated composites, Acta Mechanica 123, 1997, 163–186 10.1007/BF01178408Search in Google Scholar

[110] Cho M., Kim K.-O., Kim M.-H., Efficient higher-order shell theory for laminated composites, Composite Structures 34, 1996, 197–212 10.1016/0263-8223(95)00145-XSearch in Google Scholar

[111] Idibi A., Karama M., Touratier, M., Comparison of various laminated plate theories, Composite Structures 37, 1997, 173–184 10.1016/S0263-8223(97)80010-4Search in Google Scholar

[112] Fernande, A., A mixed formulation for elastic multilayer plates, Computes Rendus Mecanique 331, 2003, 337–342 10.1016/S1631-0721(03)00085-8Search in Google Scholar

[113] Arya H., Shimpi R. P., Naik N. K., A zigzag model for laminated composite beams, Composite Structures 56, 2002, 21–24 10.1016/S0263-8223(01)00178-7Search in Google Scholar

[114] Hassis H., A high-order theory for static-dynamic analysis of laminated plates using a special warping model, European Journal of Mechanics A / Solids 21, 2002, 323–332 10.1016/S0997-7538(01)01191-3Search in Google Scholar

[115] Sutyrin V. G., Hodges D. H., On asymptotically correct linear laminated plate theory, Int. Journal of Solids & Structures 33, 1996, 3649–3671 10.1016/0020-7683(95)00208-1Search in Google Scholar

[116] Yu W., Hodges D. H., A geometrically nonlinear shear deformation theory for composite shells, Journal of Applied Mechanics, Trans. ASME 71, 2004, 1–9 10.1115/1.1640364Search in Google Scholar

[117] Yu W., Hodges D. H., Volovoi V. V., Asymptotic generalization of Reissner-Mindlin theory: accurate three-dimensional recovery for composite shells, Computer Methods in Applied Mechanics & Engineering 191, 2002, 5087–5109 10.1016/S0045-7825(02)00440-1Search in Google Scholar

[118] Kim J.-S., Cho, M., Enhanced First-Order Shear Deformation Theory for laminated and sandwich plates, Journal of Applied Mechanics, Trans. ASME 72, 2005, 809–817 10.1115/1.2041657Search in Google Scholar

[119] Ambartsumyan S. A., Contributions to the theory of anisotropic layered shells, Applied Mechanics Reviews 15, 1962, 245–249 Search in Google Scholar

[120] Habip L. M., A survey of modern developments in the analysis of sandwich structures, Applied Mechanics Reviews 18, 1965, 93–98 Search in Google Scholar

[121] Mau S. T., A refined laminated plate theory, Journal of Applied Mechanics, Trans. ASME 40, 1973, 606–607 10.1115/1.3423032Search in Google Scholar

[122] Pagano N. J., Stress fields in composite laminates, Int. Journal of Solids & Structures 14, 1978, 385–400 10.1016/0020-7683(78)90020-3Search in Google Scholar

[123] Mawenya A. S., Davies J. D., Finite element bending analysis of multilayer plates, Int. Journal for Numerical Methods in Engineering 8, 1974, 215–225 10.1002/nme.1620080203Search in Google Scholar

[124] Chaudhuri R. A., Seide P., An approximate method for prediction of transverse shear stresses in a laminated shell, Int. Journal of Solids & Structures 23, 1987, 1145–1161 10.1016/0020-7683(87)90052-7Search in Google Scholar

[125] Chaudhuri R. A., Analysis of laminated shear-flexible angle-ply plates, Composite Structures 67, 2005, 71–84 10.1016/j.compstruct.2004.01.002Search in Google Scholar

[126] Noor A. K., Burton W. S., Peters J. M., Assessment of computational models for multilayered composite cylinders, Int. Journal of Solids & Structures 27, 1991, 1269–1286 10.1016/0020-7683(91)90162-9Search in Google Scholar

[127] Huttelmaier H. P., Epstein M., A finite element formulation for multilayered and thick shells, Computers & Structures 21, 1985, 1181–1185 10.1016/0045-7949(85)90173-7Search in Google Scholar

[128] Masud A., Panahandeh M., Finite-Element Formulation for Analysis of Laminated Composites, Journal of Engineering Mechanics ASCE 125, 1999, 1115–1124 10.1061/(ASCE)0733-9399(1999)125:10(1115)Search in Google Scholar

[129] Pinsky P. M., Kim K. O., A multi-director formulation for nonlinear elastic-viscoelastic layered shells, Computers & Structures 24, 1986, 901–913 10.1016/0045-7949(86)90298-1Search in Google Scholar

[130] Braun M., Bischoff M., Ramm E., Nonlinear 3-dimensional analysis of composite and laminate plate and shell structures, Recent Developments in Finite Element Analysis, T. J. R. Hughes, E. Oñate & O. C. Zienkiewicz (eds.), CIMNE, Barcelona, 1994, 215–224 Search in Google Scholar

[131] Wagner W., Gruttmann F., FE-Modeling of Fiber Reinforced Polymer Structures, WCCM V: Proceedings of the Fifth World Congress on Computational Mechanics, July 7–12, 2002, Vienna, Austria, H.A. Mang, F.G. Rammerstorfer & J. Eberhardsteiner (eds.), CD-ROM, Vienna 2002 10.1515/arh-2002-0027Search in Google Scholar

[132] Krätzig W. B., ’Best’ transverse shearing and stretching shell theory for nonlinear finite element simulations, Computer Methods in Applied Mechanics & Engineering 103, 1993, 135–160 10.1016/0045-7825(93)90043-WSearch in Google Scholar

[133] Başar Y., Itskov M., Eckstein A., Composite laminates: nonlinear interlaminar stress analysis by multi-layer shell elements, Computer Methods in Applied Mechanics & Engineering 185, 2000, 367–397 10.1016/S0045-7825(99)00267-4Search in Google Scholar

[134] Krätzig W. B., Jun D., Multi-layer multi-director concepts for D-adaptivity in shell theory, Computers & Structures 80, 2002, 719–734 10.1016/S0045-7949(02)00043-3Search in Google Scholar

[135] Krätzig W. B., Jun D., On ‘best’ shell models — From classical shells, degenerated and multi-layered concepts to 3D, Archive of Applied Mechanics 73, 2003, 1–25 10.1007/s00419-002-0271-4Search in Google Scholar

[136] Naghdi P. M., Finite deformations of elastic rods and shells, Finite Elasticity, Proceedings of the IUTAM Symposium, Lehigh University, Bethlehem, PA, USA, August 10–15, 1980, D.E. Carlson & R. T. Shield (eds.), Martinus Nijhoff Publishers, The Hague/Boston/London, 1982, 47–103 10.1007/978-94-009-7538-5_4Search in Google Scholar

[137] Cho Y.B., Averill R.C., First-order zig-zag sublaminate plate theory and finite element model for laminated composite and sandwich panels, Composite Structures 50, 2000, 1–15 10.1016/S0263-8223(99)00063-XSearch in Google Scholar

[138] Barbero E. J., Reddy J. N., Teply J., An accurate determination of stresses in thick laminates using a generalized plate theory, Int. Journal for Numerical Methods in Engineering 29, 1990, 1–14 10.1002/nme.1620290103Search in Google Scholar

[139] Gaudenzi P., Barboni R., Mannini A., A finite element evaluation of single-layer and multi-layer theories for the analysis of laminated plates, Composite Structures 30, 1995, 427–440 10.1016/0263-8223(94)00065-4Search in Google Scholar

[140] Carrera E., Mixed layer-wise models for multilayered plates analysis, Composite Structures 43, 1998, 57–70 10.1016/S0263-8223(98)00097-XSearch in Google Scholar

[141] Vu-Quoc L., Deng H., Tan X. G., Geometrically-exact sandwich shells: The static case, Computer Methods in Applied Mechanics & Engineering 189, 2000, 167–203 10.1016/S0045-7825(99)00294-7Search in Google Scholar

[142] Gruttmann F., Wagner W., Coupling of 2D- and 3D-composite shell elements in linear and nonlinear applications, Computer Methods in Applied Mechanics & Engineering 129, 1996, 271–287 10.1016/0045-7825(95)00897-7Search in Google Scholar

[143] Williams T. O., Addessio F. L., A general theory for laminated plates with delaminations, Int. Journal of Solids & Structures 34, 1997, 2003–2024 10.1016/S0020-7683(96)00131-XSearch in Google Scholar

[144] Li X., Liu D., Generalized laminate theories based on double superposition hypothesis, Int. Journal for Numerical Methods in Engineering 40, 1997, 1197–1212 10.1002/(SICI)1097-0207(19970415)40:7<1197::AID-NME109>3.0.CO;2-BSearch in Google Scholar

[145] Pagano N.J., Exact Solutions for Composite Laminates in Cylindrical Bending, Journal of Composite Materials 3, 1969, 389–411 10.1177/002199836900300304Search in Google Scholar

[146] Pagano, N.J., Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates, Journal of Composite Materials 4, 1970, 20–34 10.1177/002199837000400102Search in Google Scholar

[147] Pagano N. J., Free edge stress fields in composite laminates, Int. Journal of Solids & Structures 14, 1978, 401–406 10.1016/0020-7683(78)90021-5Search in Google Scholar

[148] Bogdanovich A.E., Yushanov S.P., Threedimensional variational analysis of Pagano’s problems for laminated composite plates, Composites Science & Technology 60, 2000, 2407–2425 10.1016/S0266-3538(00)00035-XSearch in Google Scholar

[149] Desai Y. M., Ramtekkar G. S., Shah A. H., A novel 3D mixed finite-element model for statics of angleply laminates, Int. Journal for Numerical Methods in Engineering 57, 2003, 1695–1716 10.1002/nme.737Search in Google Scholar

[150] Feng W., Hoa S. V., Partial hybrid finite elements for composite laminates, Finite Elements in Analysis and Design 30, 1998, 365–382 10.1016/S0168-874X(98)00038-9Search in Google Scholar

[151] Kong J., Cheung Y.K., Three-dimensional finite element analysis of thick laminated plates, Computers & Structures 57, 1995, 1051–1062 10.1016/0045-7949(95)00095-XSearch in Google Scholar

[152] Yu G., Guang-Yau T., Chaturvedi S., Adeli H., et al., A finite element approach to global-local modeling in composite laminate analysis, Computers & Structures 57, 1995, 1035–1044 10.1016/0045-7949(95)00092-USearch in Google Scholar

[153] Cen S., Yuqiu Long Y., Yao Z., A new hybrid-enhanced displacement-based element for the analysis of laminated composite plates, Computers & Structures 80, 2002, 819–833 10.1016/S0045-7949(02)00049-4Search in Google Scholar

[154] Hossain S. J., Sinha P. K., Sheikh A. H., A finite element formulation for the analysis of laminated composite shells, Computers & Structures 82, 2004, 1623–1638 10.1016/j.compstruc.2004.05.004Search in Google Scholar

[155] Alfano G., Auricchio F., Rosati L., Sacco E., MITC finite elements for laminated composite plates, Int. Journal for Numerical Methods in Engineering 50, 2001, 707–738 10.1002/1097-0207(20010130)50:3<707::AID-NME55>3.0.CO;2-1Search in Google Scholar

[156] Carrera E., A priori vs. a posteriori evaluation of transverse stresses in multilayered orthotropic plates, Composite Structures 48, 2000, 245–260 10.1016/S0263-8223(99)00112-9Search in Google Scholar

[157] Das M., Barut A., Madenci E., Ambur D.R., Complete stress ?eld in sandwich panels with a new triangular ?nite element of single-layer theory, Computer Methods in Applied Mechanics & Engineering 194, 2005, 2969–3005 10.1016/j.cma.2004.07.033Search in Google Scholar

[158] Cho M., Kim M.-H., A postprocess method using a displacement field of higher-order shell theory, Composite Structures 34, 1996, 185–196 10.1016/0263-8223(95)00144-1Search in Google Scholar

[159] Cho M., Kim J.-S., A postprocess method for laminated shells with a doubly curved nine-noded finite element, Composites, Part B 31, 2000, 65–74 10.1016/S1359-8368(99)00059-1Search in Google Scholar

[160] Wisniewski K., Schrefler B.A., On recovery of stresses for a multi-layered beam element, Engineering Computations 10, 1993, 563–569 10.1108/eb023925Search in Google Scholar

[161] Galvanetto U., Pellegrino C., Schrefler B. A., A three-dimensional stress recovery procedure for composite materials, Computers & Structures 69, 1998, 567–575 10.1016/S0045-7949(98)80095-3Search in Google Scholar

[162] Lee K., Lee S. W., A post-processing approach to determine transverse stresses in geometrically nonlinear composite and sandwich structures, Journal of Composite Materials 37, 2003, 2207–2224 10.1177/002199803038111Search in Google Scholar

[163] Park B. C., Park J. W., Kim Y. H., Stress recovery in laminated composite and sandwich panels undergoing finite rotation, Composite Structures 59, 2003, 227–235. 10.1016/S0263-8223(02)00125-3Search in Google Scholar

[164] Kant T., Swaminathan K., Estimation of transverse/ interlaminar stresses in laminated composites — a selective review and survey of current developments, Composite Structures 49, 2000, 65–75 10.1016/S0263-8223(99)00126-9Search in Google Scholar

[165] Hoff N. J., Bending and Buckling of Rectangular Sandwich Plates, NACA TN No. 2225, Washington 1950 Search in Google Scholar

[166] Schmit Jr. L.A., Monforton G.R., Finite deflection Discrete Element Analysis of sandwich plates and cylindrical shells with laminated faces, AIAA Journal 8, 1970, 1454–1461 10.2514/3.5923Search in Google Scholar

[167] Lewinski T., On displacement-based theories of sandwich plates with soft core, Journal of Engineering Mathematics 25, 1991, 223–241 10.1007/BF00044332Search in Google Scholar

[168] Malcolm D. J., Glockner P. G., Nonlinear sandwich shell and Cosserat surface theory, Journal of Engineering Mechanics ASCE 98, 1972, 1183–1203 10.1061/JMCEA3.0001662Search in Google Scholar

[169] Glockner P. G., Malcolm D. J., Lagrangian formulation of sandwich shell theory, Journal of Engineering Mechanics ASCE 99, 1973, 445–456 10.1061/JMCEA3.0001753Search in Google Scholar

[170] Borsellino C., Calabrese L., Valenza A.: Experimental and numerical evaluation of sandwich composite structures, Composites Science & Technology 64, 2004, 1709–1715 10.1016/j.compscitech.2004.01.003Search in Google Scholar

[171] Burton W. S., Noor A. K., Assessment of computational models for sandwich panels and shells, Computer Methods in Applied Mechanics & Engineering 124, 1995, 125–151 10.1016/0045-7825(94)00750-HSearch in Google Scholar

[172] Nettles A.T., Basic Mechanics of Laminated Composite Plates, NASA RP-1351, MSFC, Alabama 1994 Search in Google Scholar

[173] Stockton S. L., Engineering and Design: Composite Materials for Civil Engineering Structures, Technical Letter No. 1110-2-548, U.S. Army Corps of Engineers Washington, DC 1997 Search in Google Scholar

[174] Hu H.-T., Buckling analyses of fiber-composite laminate plates with material nonlinearity, Finite Elements in Analysis & Design 19, 1995, 169–179 10.1016/0168-874X(95)00009-ISearch in Google Scholar

[175] Pai P. F., Palazotto A. N., Nonlinear displacement based finite element analysis of composite shells — A new total Lagrangian formulation, Int. Journal of Solids & Structures 32, 1995, 3047–3073 10.1016/0020-7683(94)00273-YSearch in Google Scholar

[176] Wisnom M. R., The effect of fibre rotation in ± 45° tension tests on measured shear properties, Composites 26, 1995, 25–32 10.1016/0010-4361(94)P3626-CSearch in Google Scholar

[177] Abu-Farsakh G.A., Barakat S.A., Al-Zoubi N.R., Effect of material nonlinearity in unidirectional composites on the behavior of beam structures, Int. Journal of Solids & Structures 37, 2000, 2673–2694 10.1016/S0020-7683(99)00039-6Search in Google Scholar

[178] Woo K. S., Hong C. H., Basu P. K., Materially and geometrically nonlinear analysis of laminated anisotropic plates by p-version of FEM, Computers & Structures 81, 2003, 1653–1662 10.1016/S0045-7949(03)00151-2Search in Google Scholar

[179] Kennedy T.C., Nonlinear viscoelastic analysis of composite plates and shells, Composite Structures 41, 1998, 265–272 10.1016/S0263-8223(98)00025-7Search in Google Scholar

[180] Kłosowski P., Woznica K., Numerical treatment of elasto viscoplastic shells in the range of moderate and large rotations, Computational Mechanics 34, 2004, 194–212 10.1007/s00466-004-0565-1Search in Google Scholar

[181] Dvorak G. J., Composite materials: Inelastic behavior, damage, fatigue and fracture, Int. Journal of Solids & Structures 37, 2000, 155–170 10.1016/S0020-7683(99)00085-2Search in Google Scholar

[182] Reddy J. N., Analysis of layered composite plates accounting for large deflections and transverse shear strains, Recent Advances in Nonlinear Computational Mechanics, E. Hinton, D. R. J. Owen & C. Taylor (eds.), Pineridge Press Ltd, Swansea 1982, 155–202 Search in Google Scholar

[183] Carvelli V., Savoia M., Assessment of plate theories for multilayered angle-ply plates, Composite Structures 39, 1997, 197–207 10.1016/S0263-8223(97)00114-1Search in Google Scholar

[184] Jaunky N., Knight Jr. N.F., An assessment of shell theories for buckling of circular cylindrical laminated composite panels loaded in axial compression, Int. Journal of Solids and Structures 36, 1999, 3799–3820 10.1016/S0020-7683(98)00177-2Search in Google Scholar

[185] Ferreira A. J. M., Fernandes A. A., A review of numerical methods for the analysis of composite and sandwich structures, Multimaterials Technologies — Solutions and Opportunities, DOGMA Conference in Utrecht, 24–25 October 2000, 71–76 Search in Google Scholar

[186] Toorani M. H., Lakis A. A., General equations of anisotropic plates and shells including transverse shear deformations, rotary inertia and initial curvature effects, Journal of Sound and Vibration 237, 2000, 561–615 10.1006/jsvi.2000.3073Search in Google Scholar

[187] Altenbach J., Altenbach H., Trends in engineering plate theories, Maintenance & Reliability, Polish Academy of Sciences Quarterly 4/2001, 2001, 21–30 Search in Google Scholar

[188] Piskunov V. G., Rasskazov A. O., Evolution of the theory of laminated plates and shells, Int. Applied Mechanics (Plenum Publ. Corp.) 38, 2002, 135–166 10.1023/A:1015756726070Search in Google Scholar

[189] Qatu M. S., Recent research advances in the dynamic behavior of shells: 1989–2000, Part 1: Laminated composite shells, Applied Mechanics Reviews 55, 2002, 325–350 10.1115/1.1483079Search in Google Scholar

[190] Hult J., Rammerstorfer F. G. (eds.), Engineering Mechanics of Fibre Reinforced Polymers and Composite Structures, CISM Courses and Lectures No. 348, Springer-Verlag, Vienna — New York 1994 10.1007/978-3-7091-2702-5Search in Google Scholar

[191] Rao K. P., A rectangular laminated anisotropic shallow thin shell finite element, Computer Methods in Applied Mechanics & Engineering 194, 2005, 2285–2707 Search in Google Scholar

[192] Reddy, J. N., Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons, Ltd., New York 2002 Search in Google Scholar

[193] Palmerio A. F., Reddy J. N., Schmidt R., On a moderate rotation theory of elastic anisotropic shells — Part 2. FE analysis, Int. Journal of Non-Linear Mechanics 25, 1990, 701–714 10.1016/0020-7462(90)90008-WSearch in Google Scholar

[194] Kreja I., Schmidt R., Moderate Rotation Shell Theory in FEM application, Proceedings of Gdansk University of Technology Civil Eng series LI. 1995, 229–249 Search in Google Scholar

[195] Panda S. C.. Natarajan R., Finite element analysis of laminated composite plates, Int. Journal of Non-Linear Mechanics 14, 1979, 69–79 10.1002/nme.1620140106Search in Google Scholar

[196] Chang T. Y., Sawamiphakdi K., Large deformation analysis of laminated shells by finite element method, Computers & Structures 13, 1981, 331–340 10.1016/B978-0-08-027299-3.50042-XSearch in Google Scholar

[197] Jun S. M., Hong C. S., Buckling behavior of laminated composite cylindrical panels under axial compression, Computers & Structures 29, 1988, 479–490 10.1016/0045-7949(88)90400-2Search in Google Scholar

[198] Kweon J. H., Hong C. S., An improved arc-length method for postbuckling analysis of composite cylindrical panels, Computers & Structures 53, 1994, 541–549 10.1016/0045-7949(94)90099-XSearch in Google Scholar

[199] Wagner W., On formulation of geometrically nonlinear finite elements for fiber reinforced cylindrical shells, Statik und Dynamik in Konstruktiven Ingenieurbau, Festschrift Wilfried B. Krätzig, SFB 151 — Berichte nr 23, 1992, B3–B10 (in German) Search in Google Scholar

[200] Ferreira A. J. M., Barbosa J. T., Buckling behaviour of composite shells, Composite Structures 50, 2000, 93–98. 10.1016/S0263-8223(00)00090-8Search in Google Scholar

[201] Laschet G., Jeusette J.-P., Postbuckling finite element analysis of composite panels, Composite Structures 14, 1990, 35–48. 10.1016/0263-8223(90)90057-LSearch in Google Scholar

[202] Rikards R., Chate A., Ozolinsh O., Analysis for buckling and vibrations of composite stiffened shells and plates, Composite Structures 51, 2001, 361–370. 10.1016/S0263-8223(00)00151-3Search in Google Scholar

[203] Haas D. J., Lee W., A nine-node assumed-strain finite element for composite plates and shells, Computers & Structures 26, 1987, 445–452 10.1016/0045-7949(87)90045-9Search in Google Scholar

[204] Somashekar B.R., Prathap G., Ramesh Babu C., A field-consistent four nodded laminated anisotropic plate/shell element, Computers & Structures 25, 1987, 345–353 10.1016/0045-7949(87)90127-1Search in Google Scholar

[205] Groenwold A., Stander N., A 24 d.o.f. four-node flat shell finite element for general unsymmetric orthotropic layered composites, Engineering Computations 15, 1998, 518–543 10.1108/02644409810219794Search in Google Scholar

[206] Dorninger K., Computational analysis of composite shells at large deformations, Computer Aided Design in Composite Material Technology, Proceedings of the Int. Conf. Southampton, 1988, C. A. Brebbia, W. P. de Wilde & W. R. Blain (eds.), Springer-Verlag, Berlin 1988, 7/66–7/75 Search in Google Scholar

[207] Dorninger K., Rammerstorfer F. G., A layered composite shell element for elastic and thermoelastic stress and stability analysis at large deformations; Int. Journal for Numerical Methods in Engineering 30, 1990, 833–858 10.1002/nme.1620300417Search in Google Scholar

[208] Ramm E., A plate/shell element for large deflections and rotations, Proceedings of US-Germany Symp., MIT Boston, August 1976, 264–293 Search in Google Scholar

[209] Brank B., Peric D., Damjanic F. B., On implementation of a nonlinear four node shell finite element for thin multilayered elastic shells, Computational Mechanics 16, 1995, 341–359 10.1007/BF00350723Search in Google Scholar

[210] Kreja I., Critical examination of benchmark problems for large rotation analysis of laminated shells, Shell Structures: Theory and Applications, Proc. the 8th Conf. SSTA, Gdańsk — Jurata, 12–14 October 2005, W. Pietraszkiewicz & C. Szymczak (eds.), Taylor & Francis Group, London 2006, 481–485 Search in Google Scholar

[211] Kreja I., Schmidt R., Large rotations in First Order Shear Deformation FE analysis of laminated shells, Int. Journal Non-Linear Mechanics 41, 2006, 101–123 10.1016/j.ijnonlinmec.2005.06.009Search in Google Scholar

[212] Kim K. D., Buckling behaviour of composite panels using the finite element method, Composite Structures 36, 1996, 33–43 10.1016/S0263-8223(96)00063-3Search in Google Scholar

[213] Kim K. D., Voyiadjis G.Z., Non-linear finite element analysis of composite panels, Composites, Part B 30, 1999, 365–381 10.1016/S1359-8368(99)00007-4Search in Google Scholar

[214] Kim K. D., Park T. H., An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells, Structural Engineering & Mechanics 13, 2002, 387–410 10.12989/sem.2002.13.4.387Search in Google Scholar

[215] Kim K. D., Lomboy G. R., Han S. C., A co-rotational 8-node assumed strain shell element for postbuckling analysis of laminated composite plates and shells, Computational Mechanics 30, 2003, 330–342 10.1007/s00466-003-0415-6Search in Google Scholar

[216] Kim K.-D., Han S.-D., Suthasupradit S., Geometrically non-linear analysis of laminated composite structures using a 4-node co-rotational shell element with enhanced strains, International Journal of Non-Linear Mechanics 42, 2007, 864–881 10.1016/j.ijnonlinmec.2007.03.011Search in Google Scholar

[217] Barut A., Madenci E., Tessler A., Nonlinear analysis of laminates through a Mindlin-type shear deformable shallow shell element, Computer Methods in Applied Mechanics & Engineering 143, 1997, 155–173 10.1016/S0045-7825(96)01140-1Search in Google Scholar

[218] Han S. C., Kim K. D., Kanok-Nukulchai W., An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells, Structural Engineering and Mechanics 18, 2004, 807–829 10.12989/sem.2004.18.6.807Search in Google Scholar

[219] Han S.-D., Tabiei A., Park W.-T., Geometrically nonlinear analysis of laminated composite thin shells using a modied First-order shear deformable element-based Lagrangian shell element, Composite Structures 82, 2008, 465–474 10.1016/j.compstruct.2007.01.027Search in Google Scholar

[220] Pai P. F., Total-Lagrangian formulation and finite-element analysis of highly flexible plates and shells, Mathematics and Mechanics of Solids 12, 2007, 213–250 10.1177/1081286505055474Search in Google Scholar

[221] Arciniega R.A., Reddy J.N., Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures, Computer Methods in Applied Mechanics and Engineering 196, 2007, 1048–1073 10.1016/j.cma.2006.08.014Search in Google Scholar

[222] Hashagen E., Schellekens J. C. J., de Borst R., Parisch H., Finite element procedure for modelling fibre metal laminates, Composite Structures 32, 1995, 255–264 10.1016/0263-8223(95)00083-6Search in Google Scholar

[223] Parisch H., A continuum-based shell theory for nonlinear applications, Int. Journal for Numerical Methods in Engineering 38, 1995, 1855–1883 10.1002/nme.1620381105Search in Google Scholar

[224] Kulikov G. M., Plotnikova S. V., Simple and effective elements based upon Timoshenko-Mindlin shell theory, Computer Methods in Applied Mechanics & Engineering 191, 2002, 1173–1187 10.1016/S0045-7825(01)00320-6Search in Google Scholar

[225] Kulikov G. M., Plotnikova S. V., Non-linear strain-displacement equations exactly representing large rigid-body motions. Part I: Timoshenko-Mindlin shell theory, Computer Methods in Applied Mechanics & Engineering 192, 2003, 851–875 10.1016/S0045-7825(02)00601-1Search in Google Scholar

[226] Zhang Y.X., Kim K.S., Two simple and efficient displacement-based quadrilateral plate elements for the analysis of composite laminated plates, Int. Journal for Numerical Methods in Engineering 61, 2004, 1771–1796 10.1002/nme.1123Search in Google Scholar

[227] Sze K. Y., placeCityYao L.-Q., Pian T.H.H., An eighteen-node hybrid-stress solid-shell element for homogenous and laminated structures, Finite Elements in Analysis & Design 38, 2002, 353–374 10.1016/S0168-874X(01)00089-0Search in Google Scholar

[228] Sze K. Y., Zheng S.-J., A stabilized hybrid-stress solid element for geometrically nonlinear homogeneous and laminated shell analyses, Computer Methods in Applied Mechanics & Engineering 191, 2002, 1945–1966 10.1016/S0045-7825(01)00362-0Search in Google Scholar

[229] Bose P., Reddy J. N., Analysis of composite plates using various plate theories Part 2: Finite element model and numerical results, Structural Engineering & Mechanics 6, 1998, 727–746 10.12989/sem.1998.6.7.727Search in Google Scholar

[230] Chaplin C. P., Palazotto A. N., The collapse of composite cylindrical panels with variousthickness using Finite Element Analysis, Computers & Structures 60, 1996, 797–815 10.1016/0045-7949(95)00344-4Search in Google Scholar

[231] Carrera E., C z0 requirements—models for the two dimensional analysis of multilayered structures, Composite Structures 37, 1997, 373–383. 10.1016/S0263-8223(98)80005-6Search in Google Scholar

[232] Carrera E., Parisch H., An evaluation of geometrical nonlinear effects of thin and moderately thick multilayered composite shells, Composite Structures 40, 1998, 11–24 10.1016/S0263-8223(97)00145-1Search in Google Scholar

[233] Parisch H., An investigation of a finite rotation four node assumed strain shell element, Int. Journal for Numerical Methods in Engineering 31, 1991, 127–150 10.1002/nme.1620310108Search in Google Scholar

[234] Rammerstorfer F. G., Dorninger K., Starlinger A., Composite and sandwich shells, in Nonlinear Analysis of Shells by Finite Elements, Rammerstorfer, F. G. (ed.), CISM Courses and Lectures No. 328, Springer-Verlag, placeCityVienna — placeState New York 1992, 131–194 10.1007/978-3-7091-2604-2_6Search in Google Scholar

[235] Vu-Quoc L., Tan X.G., Optimal solid shells for nonlinear analyses of multilayer composites. I. Statics, Computer Methods in Applied Mechanics & Engineering 192, 2003, 975–1016 10.1016/S0045-7825(02)00435-8Search in Google Scholar

[236] Kulikov G. M., Plotnikova S. V., Equivalent Single-Layer and Layerwise Shell Theories and Rigid-Body Motions — Part I: Foundations, Mechanics of Advanced Materials & Structures 12, 2005, 275–283 10.1080/15376490590953545Search in Google Scholar

[237] Kulikov G. M., Plotnikova S. V., Equivalent Single-Layer and Layerwise Shell Theories and Rigid-Body Motions — Part II: Computational Aspects, Mechanics of Advanced Materials & Structures 12, 2005, 331–340 10.1080/15376490500182057Search in Google Scholar

[238] Dakshina Moorthy C. M., Reddy J. N., Modeling of laminates using a layerwise element with enhanced strains, Int. Journal for Numerical Methods in Engineering 43, 1998, 755–779 10.1002/(SICI)1097-0207(19981030)43:4<755::AID-NME449>3.0.CO;2-NSearch in Google Scholar

[239] Rammerstorfer F. G., Dorninger K., Starlinger A., Skrna-Jakl I. C., Computational methods in composite analysis and design, in Hult J., Rammerstorfer F. G. (eds.), Engineering Mechanics of Fibre Reinforced Polymers and Composite Structures, CISM Courses and Lectures No. 348, Springer-Verlag, Vienna — New York [190], 1994, 209–231 10.1007/978-3-7091-2702-5_8Search in Google Scholar

[240] Crisfield M.A., Jelenic G., Mi Y., Zhong H.-G., Fan Z., Some aspects of the non-linear finite element method, Finite Elements in Analysis & Design 27, 1997, 19–40 10.1016/S0168-874X(97)00004-8Search in Google Scholar

[241] Aitharaju V. R., Averill R. C., C0 zigzag kinematic displacement models for the analysis of laminated composites, Mechanics of Composite Materials & Structures 6, 1999, 31–56 10.1080/107594199305647Search in Google Scholar

[242] Marcinowski J., Geometrically nonlinear static analysis of sandwich plates and shells, Journal of Theoretical and Applied Mechanics (Polish Society of Theoretical and Applied Mechanics) 41, 2003, 561–574 Search in Google Scholar

[243] Ali R., Use of finite element technique for the analysis of composite structures, Computers & Structures 58, 1996, 1015–1023 10.1016/0045-7949(95)00190-RSearch in Google Scholar

[244] Sze K. Y., Liu X. H., Lo S. H., Popular benchmark problems for geometric nonlinear analysis of shells, Finite Elements in Analysis and Design 40, 2004, 1551–1569 10.1016/j.finel.2003.11.001Search in Google Scholar

[245] Eason T. G., Ochoa O. O., Modeling progressive damage in composites: a shear deformable element for ABAQUS, Composite Structures 34, 1996, 119–128 10.1016/0263-8223(95)00136-0Search in Google Scholar

[246] Manet V., The use of ANSYS to calculate the behaviour of sandwich structures, Composites Science & Technology 58, 1998, 1899–1905. 10.1016/S0266-3538(98)00010-4Search in Google Scholar

Published Online: 2011-3-18
Published in Print: 2011-3-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s13531-011-0005-x/html
Scroll to top button