Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter September 29, 2012

Fractional calculus for power functions and eigenvalues of the fractional Laplacian

  • Bartłlomiej Dyda EMAIL logo

Abstract

We calculate the fractional Laplacian Δα/2 for functions of the form u(x) = (1 − |x|2)+p and v(x) = x d u(x). As an application, we estimate the first eigenvalues of the fractional Laplacian in a ball.

[1] R. Bañuelos and T. Kulczycki, The Cauchy process and the Steklov problem. J. Funct. Anal. 211, No 2 (2004), 355–423. http://dx.doi.org/10.1016/j.jfa.2004.02.00510.1016/j.jfa.2004.02.005Search in Google Scholar

[2] R. Bãnuelos and T. Kulczycki, Eigenvalue gaps for the Cauchy process and a Poincaré inequality. J. Funct. Anal. 234, No 1 (2006), 199–225. http://dx.doi.org/10.1016/j.jfa.2005.11.01610.1016/j.jfa.2005.11.016Search in Google Scholar

[3] R. Bãnuelos and T. Kulczycki, Spectral gap for the Cauchy process on convex, symmetric domains. Comm. Partial Differential Equations 31, No 10–12 (2006), 1841–1878. http://dx.doi.org/10.1080/0360530060085618810.1080/03605300600856188Search in Google Scholar

[4] R. Bãnuelos, T. Kulczycki, and P. J. Méndez-Hernández, On the shape of the ground state eigenfunction for stable processes. Potential Anal. 24, No 3 (2006), 205–221. http://dx.doi.org/10.1007/s11118-005-8569-910.1007/s11118-005-8569-9Search in Google Scholar

[5] R. Bãnuelos, R. Latała, and P. J. Méndez-Hernández, A Brascamp-Lieb-Luttinger-type inequality and applications to symmetric stable processes. Proc. Amer. Math. Soc. 129, No 10 (2001), 2997–3008 (electronic). http://dx.doi.org/10.1090/S0002-9939-01-06137-810.1090/S0002-9939-01-06137-8Search in Google Scholar

[6] P. Biler, C. Imbert, and G. Karch, Barenblatt profiles for a nonlocal porous medium equation. C. R. Math. Acad. Sci. Paris 349, No 11–12 (2011), 641–645. http://dx.doi.org/10.1016/j.crma.2011.06.00310.1016/j.crma.2011.06.003Search in Google Scholar

[7] R.M. Blumenthal and R. K. Getoor, The asymptotic distribution of the eigenvalues for a class of Markov operators. Pacific J. Math. 9 (1959), 399–408. Search in Google Scholar

[8] K. Bogdan, Representation of α-harmonic functions in Lipschitz domains. Hiroshima Math. J. 29, No 2 (1999), 227–243. Search in Google Scholar

[9] K. Bogdan and T. Byczkowski, Potential theory of Schrödinger operator based on fractional Laplacian. Probab. Math. Statist. 20, No 2 (2000), 293–335 (Acta Univ. Wratislav. No. 2256). Search in Google Scholar

[10] K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song, and Z. Vondraček, Potential Analysis of Stable Processes and its Extensions (Ed. by P. Graczyk and A. Stos). Vol. 1980 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2009. http://dx.doi.org/10.1007/978-3-642-02141-110.1007/978-3-642-02141-1Search in Google Scholar

[11] K. Bogdan and B. Dyda, The best constant in a fractional Hardy inequality. Math. Nachr. 284, No 5–6 (2011), 629–638. http://dx.doi.org/10.1002/mana.20081010910.1002/mana.200810109Search in Google Scholar

[12] K. Bogdan, T. Kulczycki, and M. Kwásnicki, Estimates and structure of α-harmonic functions. Probab. Theory Related Fields 140, No 3–4 (2008), 345–381. 10.1007/s00440-007-0067-0Search in Google Scholar

[13] Z.-Q. Chen and R. Song, Two-sided eigenvalue estimates for subordinate processes in domains. J. Funct. Anal. 226, No 1 (2005), 90–113. http://dx.doi.org/10.1016/j.jfa.2005.05.00410.1016/j.jfa.2005.05.004Search in Google Scholar

[14] R. D. DeBlassie, Higher order PDEs and symmetric stable processes. Probab. Theory Related Fields 129, No 4 (2004), 495–536. Search in Google Scholar

[15] B. Dyda, Fractional Hardy inequality with remainder term. Colloq. Math. 122, No 1 (2011), 59–67. http://dx.doi.org/10.4064/cm122-1-610.4064/cm122-1-6Search in Google Scholar

[16] B. Dyda and T. Kulczycki, Spectral gap for stable process on convex planar double symmetric domains. Potential Anal. 27, No 2 (2007), 101–132. http://dx.doi.org/10.1007/s11118-007-9046-410.1007/s11118-007-9046-4Search in Google Scholar

[17] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi. Higher Transcendental Functions, Vols. I, II. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. (Based, in part, on notes left by Harry Bateman). Search in Google Scholar

[18] P. J. Fitzsimmons, Hardy’s inequality for Dirichlet forms. J. Math. Anal. Appl. 250, No 2 (2000), 548–560. http://dx.doi.org/10.1006/jmaa.2000.698510.1006/jmaa.2000.6985Search in Google Scholar

[19] R. L. Frank and R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255, No 12 (2008), 3407–3430. http://dx.doi.org/10.1016/j.jfa.2008.05.01510.1016/j.jfa.2008.05.015Search in Google Scholar

[20] R. K. Getoor, Markov operators and their associated semi-groups. Pacific J. Math. 9 (1959), 449–472. Search in Google Scholar

[21] R. K. Getoor, First passage times for symmetric stable processes in space. Trans. Amer. Math. Soc. 101 (1961), 75–90. http://dx.doi.org/10.1090/S0002-9947-1961-0137148-510.1090/S0002-9947-1961-0137148-5Search in Google Scholar

[22] F. Hmissi, Fonctions harmoniques pour les potentiels de Riesz sur la boule unité. Exposition. Math. 12, No 3 (1994), 281–288. Search in Google Scholar

[23] V. Kiryakova, A brief story about the operators of the generalized fractional calculus. Fract. Calc. Appl. Anal. 11, No 2 (2008), 203–220; at http://www.math.bas.bg/~fcaa. Search in Google Scholar

[24] H. M. Kogan, A variational problem in approximation theory. Ž. Vyčisl. Mat. i Mat. Fiz. 2 (1962), 151–154. Search in Google Scholar

[25] H. M. Kogan, On a singular integro-differential equation. Differencialnye Uravnenija 3 (1967), 278–293. Search in Google Scholar

[26] T. Kulczycki, M. Kwásnicki, J. Małecki, and A. Stos, Spectral properties of the Cauchy process on half-line and interval. Proc. Lond. Math. Soc. (3) 101, No 2 (2010), 589–622. http://dx.doi.org/10.1112/plms/pdq01010.1112/plms/pdq010Search in Google Scholar

[27] M. Kwásnicki, Eigenvalues of the fractional Laplace operator in the interval. arXiv:1012.1133v1 [math.SP], 2010, To appear in: J. Funct. Anal. Search in Google Scholar

[28] M. Kwásnicki, Spectral gap estimate for stable processes on arbitrary bounded open sets. Probab. Math. Statist. 28, No 1 (2008), 163–167. Search in Google Scholar

[29] M. Kwásnicki, Eigenvalues of the Cauchy process on an interval have at most double multiplicity. Semigroup Forum 79, No 1 (2009), 183–192. http://dx.doi.org/10.1007/s00233-009-9166-910.1007/s00233-009-9166-9Search in Google Scholar

[30] N. S. Landkof, Foundations of Modern Potential Theory. Springer-Verlag, New York, 1972. (Transl. from Russian by A.P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180). http://dx.doi.org/10.1007/978-3-642-65183-010.1007/978-3-642-65183-0Search in Google Scholar

[31] C. Li, F. Zeng, and F. Liu, Spectral approximations to the fractional integral and derivative. Fract. Calc. Appl. Anal. 15, No 3 (2012), 383–406; DOI: 10.2478/s13540-012-0028-x, at http://www.springerlink.com/content/1311-0454 10.2478/s13540-012-0028-xSearch in Google Scholar

[32] S. M. Pozin and L. A. Sakhnovich, A two-sided bound on the lowest eigenvalue of an operator that characterizes stable processes. Teor. Veroyatnost. i Primenen. 36, No 2 (1991), 368–370. Search in Google Scholar

[33] S. G. Samko. A new approach to the inversion of the Riesz potential operator. Fract. Calc. Appl. Anal. 1, No 3 (1998), 225–245; Abstract at http://www.math.bas.bg/~fcaa. Search in Google Scholar

[34] S. G. Samko. Hypersingular Integrals and Their Applications, Vol. 5 of Analytical Methods and Special Functions. Taylor & Francis Ltd., London, 2002. 10.1201/9781482264968Search in Google Scholar

[35] S. G. Samko, A. A. Kilbas, and O. I. Marichev. Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon, 1993. (Transl. and Revised from the 1987 Russian original Ed.). Search in Google Scholar

[36] Y. Shiozawa and M. Takeda, Variational formula for Dirichlet forms and estimates of principal eigenvalues for symmetric α-stable processes. Potential Anal. 23, No 2 (2005), 135–151. http://dx.doi.org/10.1007/s11118-004-5392-710.1007/s11118-004-5392-7Search in Google Scholar

Published Online: 2012-9-29
Published in Print: 2012-12-1

© 2012 Diogenes Co., Sofia

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s13540-012-0038-8/html
Scroll to top button