Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter June 26, 2013

Fractional integration toolbox

  • Toma Marinov EMAIL logo , Nelson Ramirez and Fidel Santamaria

Abstract

The problems formulated in the fractional calculus framework often require numerical fractional integration/differentiation of large data sets. Several existing fractional control toolboxes are capable of performing fractional calculus operations, however, none of them can efficiently perform numerical integration on multiple large data sequences. We developed a Fractional Integration Toolbox (FIT), which efficiently performs fractional numerical integration/differentiation of the Riemann-Liouville type on large data sequences. The toolbox allows parallelization and is designed to be deployed on both CPU and GPU platforms.

[1] T.J. Anastasio, The fractional-order dynamics of brainstem vestibulooculomotor neurons. Biol. Cybern. 72 (1994), 69–79. http://dx.doi.org/10.1007/BF0020623910.1007/BF00206239Search in Google Scholar

[2] K. Assaleh, W.M. Ahmad, Modeling of speech signals using fractional calculus. In: 9th International Symposium on Signal Processing and Its Applications, ISSPA 2007, 12–15 Feb. (2007), 1–4. http://dx.doi.org/10.1109/ISSPA.2007.455556310.1109/ISSPA.2007.4555563Search in Google Scholar

[3] C. deBoor, Practical Guide to Splines. Springer, New York (2001). Search in Google Scholar

[4] S.D. Conte, C. deBoor, Elementary Numerical Analysis. McGraw-Hill, New York (2002). Search in Google Scholar

[5] K. Diethelm, N.J. Ford, A.D. Freed, Yu. Luchko, Algorithms for the fractional calculus: A selection of numerical methods. Comput. Methods Appl. Mech. Engrg. 194 (2005), 743–773. http://dx.doi.org/10.1016/j.cma.2004.06.00610.1016/j.cma.2004.06.006Search in Google Scholar

[6] K. Diethelm, The Analysis of Fractional Differential Equations. Springer, Berlin (2010). http://dx.doi.org/10.1007/978-3-642-14574-210.1007/978-3-642-14574-2Search in Google Scholar

[7] A. Dokoumetzidis, R. Magin, P. Macheras, Fractional kinetics in multicompartmental systems. J. Pharmacokinet. Pharmacodyn. 37, No 5 (2010), 507–524. http://dx.doi.org/10.1007/s10928-010-9170-410.1007/s10928-010-9170-4Search in Google Scholar

[8] J.F. Douglas, Some applications of fractional calculus to polymer science. Advances in Chemical Physics 102 (2007), 121–191. http://dx.doi.org/10.1002/9780470141618.ch310.1002/9780470141618.ch3Search in Google Scholar

[9] N.J. Ford, A.C. Simpson, The numerical solution of fractional differential equations: speed versus accuracy. Numerical Algorithms 26 (2001), 333–346. http://dx.doi.org/10.1023/A:101660131215810.1023/A:1016601312158Search in Google Scholar

[10] F.N. Fritsch, R.E. Carlson, Monotone piecewise cubic interpolation. SIAM J. Numer. Anal 17, No 2 (1980). 10.1137/0717021Search in Google Scholar

[11] P. Melchior, B. Orsoni, O. Lavialle and A. Oustaloup, The CRONE toolbox for Matlab: Fractional Path Planning Design in Robotics; http://www.ims-bordeaux.fr/CRONE/toolbox. Search in Google Scholar

[12] M. Monsrefi-Torbati, J.K. Hammond, Physical and geometrical interpretation of fractional operators. J. Franklin Inst. 335B, No 6 (1998), 1077–1086. http://dx.doi.org/10.1016/S0016-0032(97)00048-310.1016/S0016-0032(97)00048-3Search in Google Scholar

[13] R.R. Nigmatullin, Fractional integral and its physical interpretation. Teoret. Mat. Fiz. 90, No 3 (1992), 354–368. Search in Google Scholar

[14] K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover, Mineola, New York (2006). Search in Google Scholar

[15] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5, No 4 (2002), 367–386. Search in Google Scholar

[16] F. Santamaria, S. Wils, E. de Schutter, G.J. Augustine, Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52 (2006), 635–648. http://dx.doi.org/10.1016/j.neuron.2006.10.02510.1016/j.neuron.2006.10.025Search in Google Scholar PubMed PubMed Central

[17] F. Santamaria, S. Wils, E. de Schutter, G.J. Augustine, The diffusional properties of dendrites depend on the density of dendritic spines. Eur. J. Neurosci. 34, No 4 (2011), 561–568. http://dx.doi.org/10.1111/j.1460-9568.2011.07785.x10.1111/j.1460-9568.2011.07785.xSearch in Google Scholar PubMed PubMed Central

[18] N. Sebaa, Z.E.A. Fellah, W. Lauriks, C. Depollier, Application of fractional calculus to ultrasonic wave propagation in human cancellous bone. Signal Processing Archive 86, No 10 (2006), 2668–2677. http://dx.doi.org/10.1016/j.sigpro.2006.02.01510.1016/j.sigpro.2006.02.015Search in Google Scholar

[19] E. Soczkiewicz, Application of fractional calculus in the theory of viscoelasticity. Molecular and Quantum Acoustics 23 (2002), 397–404. Search in Google Scholar

[20] I.M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics. Physics Today 55, No 11 (2002), 48–54. http://dx.doi.org/10.1063/1.153500710.1063/1.1535007Search in Google Scholar

[21] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis. Springer, New York (1980). 10.1007/978-1-4757-5592-3Search in Google Scholar

[22] A. Tepljakov, E. Petlenkov, J. Belikov, FOMCON: Fractional-Order Modeling and Control, Toolbox for MATLAB. In: 18th International Conf. “Mixed Design of Integrated Circuits and Systems”, June 16–18 (2011), Gliwice, Poland. Search in Google Scholar

[23] D. Valerio, J.S. da Costa, Ninteger: a non-integer control toolbox for Matlab; http://web.ist.utl.pt/duarte.valerio/FDA04T.pdf. Search in Google Scholar

Published Online: 2013-6-26
Published in Print: 2013-9-1

© 2013 Diogenes Co., Sofia

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s13540-013-0042-7/html
Scroll to top button