Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter April 24, 2015

Experimental models of acute respiratory distress syndrome

  • Emine Yilmaz Sipahi EMAIL logo

Abstract

Acute respiratory distress syndrome (ARDS) is a major cause of morbidity, death and cost in intensive care units. ARDS was first described in 1967, and the new definition was determined as the Berlin definition in 2011 in Berlin. ARDS is a syndrome of inflammation and increased permeability of the blood-gas barrier. Despite intensive research, treatments remain limited and supportive therapies represent the mainstay of the treatment of ARDS. This inability of therapeutic modalities largely depends on the complex pathogenesis of this syndrome with multiple overlapping signaling pathways activated depending on the type of lung injury. Today, this syndrome is still associated with a high morbidity and mortality. Animal models provide us a bridge between bench and bedside. Numerous different models have been developed in order to establish the properties of ARDS, but, to date, no single animal model that mimics all of the characteristics of ARDS in humans has been developed, and most of the existing animal models are relevant only for limited aspects of human ARDS. Furthermore, each animal model has unique features that affect responses to treatment. Therefore, when choosing an animal model of ARDS, to take into account the key feature of ARDS as a working hypothesis to be tested and then create the most appropriate model to exhibit those features is important. The goal of this review is to summarize the properties of the most commonly used experimental animal models of ARDS after mentioning briefly the causes and pathophysiology.

References

1. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L. et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994;149:818-24.10.1164/ajrccm.149.3.7509706Search in Google Scholar PubMed

2. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA 2012;307:2526-33.Search in Google Scholar

3. Fanelli V, Vlachou A, Ghannadian S, Simonett i U, Slutsky AS, Zhang H. Acute respiratory distress syndrome: New definition, current and future therapeutic options. J Thorac Dis 2013;5:326-34.Search in Google Scholar

4. Walkey AJ, Summer R, Ho V, Alkana P. Acute respiratory distress syndrome: Epidemiology and management approaches. Clin Epidemiol 2012;4:159-69.10.2147/CLEP.S28800Search in Google Scholar PubMed PubMed Central

5. Villar J, Blanco J, Añón JM, Santos-Bouza A, Blanch L, Ambros A, et al. The ALIEN Network: İncidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. Intensive Care Med 2011;37:1932-41.10.1007/s00134-011-2380-4Search in Google Scholar PubMed

6. Martin TR, Matute-Bello G. Experimental models and emerging hypotheses for acute lung injury. Crit Care Clin 2011;27:735-52.10.1016/j.ccc.2011.05.013Search in Google Scholar PubMed PubMed Central

7. Matt hay MA, Zimmerman GA, Esmon C, Bhatt acharya J, Coller B, Doerschuk CM, et al. Future research directions in acute lung injury: Summary of a National Heart, Lung, and Blood Institute Working Group. Am J Respir Crit Care Med 2003;167:1027-35.10.1164/rccm.200208-966WSSearch in Google Scholar PubMed

8. Dushianthan A, Grocott MP, Postle AD, Cusack R. Acute respiratory distress syndrome and acute lung injury. Postgrad Med J 2011;87:612-22.10.1136/pgmj.2011.118398Search in Google Scholar PubMed

9. Tsushima K, King LS, Aggarwal NR, De Gorordo A, D’Alessio FR, Kubo K. Acute lung injury review. Intern Med 2009;48:621-30.10.2169/internalmedicine.48.1741Search in Google Scholar PubMed

10. Bellingan GJ. The pulmonary physician in critical care * 6: The pathogenesis of ALI/ARDS. Thorax 2002;57:540-6.10.1136/thorax.57.6.540Search in Google Scholar PubMed PubMed Central

11. Ware LB, Matt hay MA. The acute respiratory distress syndrome. N Engl J Med 2000;342:1334-49.10.1056/NEJM200005043421806Search in Google Scholar PubMed

12. Boyle AJ, McNamee JJ, McAuley DF. Biological therapies in the acute respiratory distress syndrome. Expert Opin Biol Ther 2014;14:969-81.10.1517/14712598.2014.905536Search in Google Scholar PubMed

13. Puneet P, Moochhala S, Bhatia M. Chemokines in acute respiratory dis tress syndrome. Am J Physiol Lung Cell Mol Physiol 2005;288:L3-15.10.1152/ajplung.00405.2003Search in Google Scholar PubMed PubMed Central

14. Tasaka S, Hasegawa N, Ishizaka A. Pharmacology of acute lung injury. Pulm Pharmacol Ther 2002;15:83-95.10.1006/pupt.2001.0325Search in Google Scholar PubMed

15. Varisco BM. The pharmacology of acute lung injury in sepsis. Adv Phar macol Sci 2011;2011:254619.10.1155/2011/254619Search in Google Scholar PubMed PubMed Central

16. Duggal A, Ganapathy A, Mohana Ratnapalan M, Adhikari NK. Pharmacological treatments for acute respiratory distress syndrome: Systematic review. Minerva Anestesiol 2014 Jun 17 [Epud ahead of print].Search in Google Scholar

17. Mutate-Bello G, Downey G, Moore BB, Groshong SD, Matt hay MA, Slutsky AS, et al. on behalf of the Acute Lung Injury in Animals Study Group. An official American Thoracic Society Workshop Report: Features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 2011;44:725-38.10.1165/rcmb.2009-0210STSearch in Google Scholar PubMed PubMed Central

18. Matute-Bello G, Matt hay MA. Animal models of acute lung injury. Available from: http://www.thoracic.org/clinical/critical-care/criticalcare-research/animal-models-of-acute-lung-injury.php, 2013 [Last accessed on 2014].Search in Google Scholar

19. Mutate-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2008;295:L379-99.10.1152/ajplung.00010.2008Search in Google Scholar PubMed PubMed Central

20. Bastarache JA, Blackwell TS. Development of animal models for the acute respiratory distress syndrome. Dis Model Mech 2009;2:218-23.10.1242/dmm.001677Search in Google Scholar PubMed PubMed Central

21. Kaynar G, Yurdakan G, Comert F, Yilmaz-Sipahi E. Effects of peripheral benzodiazepine receptor ligand Ro5-4864 in four animal models of acute lung injury. J Surg Res 2013;182:277-84.10.1016/j.jss.2012.10.023Search in Google Scholar PubMed

22. Tekin IO, Sipahi EY, Comert M, Acikgoz S, Yurdakan G. Low-density lipoproteins oxidized after intestinal ischemia/reperfusion in rats. J Surg Res 2009;157:e47-54.10.1016/j.jss.2008.11.006Search in Google Scholar PubMed

23. Cunningham AL, Hurley JV. Alpha-naphthyl-thiourea-induced pulmonary oedema in the rat: A topographical and electronmicroscope study. J Pathol 1972;106:25-35.10.1002/path.1711060103Search in Google Scholar PubMed

24. Erdem MK, Yurdakan G, Yilmaz-Sipahi E. The effects of ketamine, midazolam and ketamine/xylazine on acute lung injury induced by alpha-naphthylthiourea (ANTU) in rats. Adv Clin Exp Med 2014;23:343-51.10.17219/acem/37124Search in Google Scholar PubMed

25. Atalay F, Yurdakan G, Yilmaz-Sipahi E. The Effect of the endothelin recep tor antagonist tezosentan on acute lung injury induced by alphanaph thylthiourea in rats. Kaohsiung J Med Sci 2012;28:72-8.10.1016/j.kjms.2011.10.019Search in Google Scholar PubMed

26. Voelker M, Fichtner F, Kasper M, Kamprad M, Sack U, Kaisers U, et al. Characterization of a double-hit murine model of Acute Respiratory Distress Syndrome. Clin Exp Pharmacol Physiol 2014;41:844-53.10.1111/1440-1681.12283Search in Google Scholar PubMed

27. Varisco BM. The pharmacology of acute lung injury in sepsis. Adv Pharmacol Sci 2011;2011:254619.10.1155/2011/254619Search in Google Scholar PubMed PubMed Central

28. Everhart MB, Han W, Sherrill TP, Arutiunov M, Polosukhin VV, Burke JR, et al. Duration and intensity of NF-kappaB activity determine the severity of endotoxin-induced acute lung injury. J Immunol 2006;176:4995-5005.10.4049/jimmunol.176.8.4995Search in Google Scholar PubMed

29. Dejager L, Pinheiro I, Dejonckheere E, Libert C. Cecal ligation and puncture: The gold standard model for polymicrobial sepsis? Trends Microbiol 2011;19:198-208.Search in Google Scholar

30. Antonelli M, Azoulay E, Bonten M, Chastre J, Citerio G, Conti G, et al. Year in review in Intensive Care Medicine, 2008: II. Experimental, acute respiratory failure and ARDS, mechanical ventilation and endotracheal intubation. Intensive Care Med 2009;35:215-31.10.1007/s00134-008-1380-5Search in Google Scholar PubMed PubMed Central

31. Hubbard WJ, Choudhry M, Schwacha MG, Kerby JD, Rue LW 3rd, Bland KI, et al. Cecal ligation and puncture. Shock 2005;24 Suppl 1:52-7.10.1097/01.shk.0000191414.94461.7eSearch in Google Scholar PubMed

32. Maier S, Traeger T, Entleutner M, Westerholt A, Kleist B, Hüser N, et al. Cecal ligation and puncture versus colon ascendens stent peritonitis: Two distinct animal models for polymicrobial sepsis. Shock 2004;21:505-11.10.1097/01.shk.0000126906.52367.ddSearch in Google Scholar PubMed

33. Berguer R, Alarcon A, Feng S, Gutt C. Laparoscopic cecal ligation and puncture in the rat. Surg Endosc 1997;11:1206-8.10.1007/s004649900570Search in Google Scholar PubMed

34. Wiener-Kronish JP, Albertine KH, Matthay MA. Differential responses of the endothelial barriers of the lung in sheep to Escherichia coli endotoxin. J Clin Invest 1991;88:864-75.10.1172/JCI115388Search in Google Scholar PubMed PubMed Central

35. Lai CC, Liu WL, Chen CM. Glutamine att enuates acute lung injury caused by acid aspiration. Nutrients 2014;6:3101-16.10.3390/nu6083101Search in Google Scholar PubMed PubMed Central

36. Reiss LK, Uhlig U, Uhlig S. Models and mechanisms of acute lung injury caused by direct insults. Eur J Cell Biol 2012;91:590-601.10.1016/j.ejcb.2011.11.004Search in Google Scholar

37. Fard N, Saffari A, Emami G, Hofer S, Kauczor HU, Mehrabi A. Acute respiratory distress syndrome induction by pulmonary ischemiareperfusion injury in large animal models. J Surg Res 2014;189:274-84.10.1016/j.jss.2014.02.034Search in Google Scholar

38. Lee SM, Choi H, Yang G, Park KC, Jeong S, Hong S. MicroRNAs mediate oleic acid-induced acute lung injury in rats using an alternative injury mechanism. Mol Med Rep 2014;10:292-300.10.3892/mmr.2014.2155Search in Google Scholar

39. Lingappan K, Jiang W, Wang L, Couroucli XI, Barrios R, Moorthy B. Sex-specific differences in hyperoxic lung injury in mice: İmplications for acute and chronic lung disease in humans. Toxicol Appl Pharmacol 2013;272:281-90.10.1016/j.taap.2013.06.007Search in Google Scholar

40. Muellenbach RM, Kredel M, Zollhoefer B, Johannes A, Kuestermann J, Schuster F, et al. Acute respiratory distress induced by repeated saline lavage provides stable experimental conditions for 24 hours in pigs. Exp Lung Res 2009;35:222-33.10.1080/01902140802534975Search in Google Scholar

41. Sipahi E, Hodoglugil U, Ercan ZS, Turker RK. Acute effect of endothelin-1 on lung oedema induced by alphanaphthylthiourea (ANTU). Pharmacol Res 1996;33:375-8.10.1006/phrs.1996.0052Search in Google Scholar

42. Sipahi E, Hodoglugil U, Ustun H, Zengil H, Turker RK, Ercan ZS. An unexpected interaction between NG-nitro-Larginine methyl ester and L-arginine in alphanaphthylthiourea-induced pulmonary oedema in rats. Eur J Pharmacol 1997;321:45-51.10.1016/S0014-2999(96)00932-6Search in Google Scholar

43. Sipahi EY, Ozel Tekin I, Comert M, Barut F, Ustun H, Sipahi TH. Oxidized low-density lipoproteins accumulate in rat lung after experimental lung edema induced by alphanaphthylthiourea (ANTU). Pharmacol Res 2004;50:585-91.10.1016/j.phrs.2004.04.003Search in Google Scholar PubMed

44. Comert M, Sipahi EY, Ustun H, Isikdemir F, Numanoglu G, Barut F, et al. Morphine modulates inducible nitric oxide synthase expression and reduces pulmonary oedema induced by alpha-naphthylthiourea. Eur J Pharmacol 2005;511:183-9.10.1016/j.ejphar.2005.01.038Search in Google Scholar PubMed

45. Sipahi E, Ustun H, Niyazi Ayoglu F. Acute effects of thiopental, pentobarbital and urethane on lung oedema induced by alpha naphtylthiourea (ANTU). Pharmacol Res 2002;45:235-9.10.1006/phrs.2001.0937Search in Google Scholar PubMed

46. Hanci V, Yurdakan G, Yurtlu S, Turan IO, Sipahi EY. Protective effect of dexmedetomidine in a rat model of a-naphthylthiourea-induced acute lung injury. J Surg Res 2012;178:424-30.10.1016/j.jss.2012.02.027Search in Google Scholar

47. Richter CP. The physiology and cytology of pulmonary edema and pleural effusion produced in rats by alpha-naphthyl thiourea (ANTU). J Thorac Surg 1952;23:66-91. 10.1016/S0096-5588(20)31220-4Search in Google Scholar

Published Online: 2015-4-24
Published in Print: 2014-12-1

© 2015

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.4103/2224-4018.147738/html
Scroll to top button