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Abstract: This chapter is devoted to an important requirement of successful model or-
der reduction (MOR) application, namely, the software aspect. The most common sit-
uation is the existence of a so-called full model, i. e., a high-fidelity, high-dimensional
simulationmodel, that needs to be accelerated byMOR techniques, optimally without
reimplementing the partially complex reduction techniques, as presented in the first
volume of this handbook.

Initially, as neither full simulation models nor MOR algorithms are to be repro-
grammed, but ideally are reused from existing implementations, we concentrate on
the aspect of the interplay of such packages. We will discriminate, discuss, and exem-
plify different levels of solver “intrusiveness” that allowcorresponding reduction tech-
niques to be applied. On the one hand, most effective MOR techniques require deep
access into the full model’s simulation code. On the other hand, application-specific
full model simulators may only offer very restricted access to internals, especially in
case of commercial packages. This gap in requirements and practical accessibilitymo-
tivates the discrimination into “white-box,” “gray-box,” and “black-box” simulation
scenarios. In particular, we exemplify the ideal case of MOR for white-box situations
on two examples, namely, parametric linear elliptic PDE and parametric nonlinear
ODE systems. Depending on those access classes, different corresponding reduction
techniques can be applied.

The second part of the current chapter then discusses existingMOR software. Sev-
eral program packages exist which provide MOR techniques. They differ in availabil-
ity, licensing, programming language, system types, physical application domains,
external simulator bindings, etc. We give an overview of the most relevant of those
MOR packages, such that applicants can identify potential suitable software library
candidates.
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13.1 Introduction

Following themainmotivation of this handbook, we recall thatmodel order reduction
(MOR) is a key technique to enable high-level simulation scenarios. By reducing the di-
mensionality or order of a high-fidelity or “full” model, the generation of a “reduced”
model is expected to give approximate but still accurate results while decreasing run-
time, memory, and ideally financial costs for simulation and product development.
By reduced models, more complex simulation settings are possible beyond single for-
ward solves: “Multiquery” sampling is possible enabling uncertainty quantification or
surrogate-based optimization, and “real-time” response is ideally achieved enabling
interactive design or real-time control applications. We want to refer to the multitude
of textbooks that have appeared during the last two decades such as [35, 4, 2, 30]. The
key of efficient model reduction is an “offline-online decomposition,” which relates
to the separation of the MOR into two phases: The reduced model construction phase
(possibly computationally intensive, performed only once) is denoted “offline phase,”
while the execution of the reduced model (ideally computationally cheap, performed
multiple times) is very fast due to small memory and computational demands.

In this chapter we want to discuss from a rather general level some perspectives
on the state and perspectives of the interplay between high-fidelity simulation soft-
ware packages andMORalgorithms and code. Currently,many commercial simulation
software packages exist, but few offer MOR technology or access to required internals.
By this, such existing software packages cannot straightforwardly be combined with
MOR and can thus not be used for modern simulation tasks, potentially representing
an economic disadvantage.

On the other hand, MOR researchers have a high interest to make use of these
commercial packages due to efficiency, accessibility to industrial-sized relevant ap-
plications, etc. As a result, MOR researchers frequently struggle or fail to get their al-
gorithms to work with such commercial tools. Typically, they then either are content
with “toy examples,” and implement the high-dimensional solvers by themselves, or
try to use the existing commercial packages by workarounds or “hacks.” The ideal
way, though, of developing elegant and goal-oriented interface access between solvers
and MOR technology is rarely realized.

The ideal and frequent goal of MOR is to have reduced models that are compu-
tationally independent of the full dimension during the online phase. This is called
“ideal online efficiency.” In order to obtain this, a suitable offline-online decompo-
sition must realize suitable interaction between the full-order and the reduced-order
model. In particular for obtaining ideal online efficiency,MOR techniques are typically
very code-intrusive in the sense that specific details of the fullmodelmust be accessed
in an efficient manner. If a full simulator provides all of this necessary information to
the outside by suitable functionality, we call such reduction scenario “white-box,” as
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from anMORviewpoint the fullmodel is fully transparent. Asmentioned earlier, high-
fidelity simulation packages are frequently not fully capable to provide the required
ingredients, because of “closed-source” policies, code inaccessibility, code complex-
ity, or algorithm strategy. For instance, if a full model performs discretizations in a
matrix-free fashion by full mesh traverse, or a package only can assemble full finite
element matrices, then a rapid partial evaluation of discretization operators or single
matrix entries is difficult without (costly) traversing themesh or assembling the global
matrix, which is relevant for many MOR procedures.

In particular, beside the clean, transparent, and optimal white-box scenarios
mentioned earlier, we want to introduce notions of “gray-box” and “black-box”
scenarios, where the high-fidelity model provides partial or none of the required
information. For such situations, there exist several practical solution strategies,
workarounds, or “hacks” to enable MOR without full access to required ingredients.
We will particularly also address such strategies.

As a general observation, the tedious and time-intensive development of software
is not warranted suitable acknowledgement from the scientific communities in ap-
plied sciences. Regrettably, this is always just expected and accepted as a by-product
of somemain disciplinary scientific work/progress. This is reflected in this chapter, as
we will not have many references to journal articles but mostly students theses, pro-
ceedings articles, presentations, or PhD theses that are partially devoted to the aspect
of MOR software.

By nature, many reduction methods will be mentioned in this chapter, and most
of these techniques are described in detail in Volumes 1 and 2 of the current handbook.
In order to avoid an abundant reference list, at first use of themethods, we solely refer
to the corresponding chapters.

This contribution should serve both applicants aswell asMOR researchers: Appli-
cants can identify which kind of internals they could or are willing to provide for the
most elementary reduction techniques. Correspondingly, they candecide aboutwhich
software packages to use and which “hacks” exist to enable MOR for their problem.
Scientists working onMOR software should get an incentive to extend or contribute to
existing academic MOR software packages.

This chapter is structured as follows. In the next section, we exemplify the inter-
play between full simulation packages and MOR algorithms. For this we choose two
model examples that in certain sense represent different “corners” in the space ofMOR
model problems. The interplay of full and MOR software packages needs to be real-
ized for white-box and gray-box, as well as black-box scenarios, and we comment on
some main coupling techniques. In Section 13.3 we then give an overview of existing
MOR software packages, both toolboxes of existing commercial simulator packages
and packages developed at academic institutions. We give short characterizations of
the packages such that users have some guideline onwhich package to choose in their
respective application. We conclude in Section 13.4 with a summary and some recom-
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mendations for both commercial simulator developers/companies andacademicMOR
researchers.

13.2 Interplay of full and reduced solvers

In order to clarify and illustrate the needs and challenges in interplay ofMOR software
with full solvers, we remain conceptional in this section, but still are very specific in
terms of two model types. We address both the reduced basis (RB) methods commu-
nity, aiming at solving parameterized partial differential equations (PDEs) (Chapters 1,
4, and 6 in Volume 2 ofModel order reduction), and control theory researchers, aiming
at ordinary differential equation (ODE) systems. Therefore, we choose two model ex-
amples representing those fields. For those models we exemplify each a plain vanilla
state-of-the-art reduction scheme, which despite simplicity is intrusive in the sense
that it requires deep access into the full solver. Therefore, we denote these as white-
box approaches. Correspondingly, we exemplify how, in realistic cases with limited
information about or restricted access to the full model, MOR can still be realized in
gray-box or black-box scenarios.

As our first model we select a parametric variational form, e. g., as appearing by
finite element discretizations of a linear elliptic PDE. As our second model we use a
nonlinear ODE system. This covers both a linear and a nonlinear, a steady and an
unsteady, and a parametric and a nonparametric case.

For these models and reduction scenarios, we necessarily must repeat some no-
tation and terminology which appears at various places within this handbook, but
which we consider essential to make the point. In the last subsection, we comment on
possible coupling techniques of full and reduced solver packages. Readers who are fa-
miliar with those concepts or who are primarily interested in MOR software packages
may skip this section and directly continue with Section 13.3.

13.2.1 Model 1: parametric stationary variational problem

We assume to have a Hilbert space X of functions, which is assumed to be finite-
dimensional of high dimension n and spanned by basis functions ψi, i = 1, . . . , n. We
want to solve a linear parametric variational problem as is typical in RB methods
(Chapters 1, 4, and 6 in Volume 2 ofModel order reduction or [14, 17]), omitting the out-
put for ease of presentation: For a parameter μ ∈ 𝒫 from a parameter domain 𝒫 ⊂ ℝp,
find a solution u(μ) ∈ X such that

a(u(μ), v; μ) = f (v; μ), v ∈ X. (13.1)
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Here, for any μ, the form a(⋅, ⋅; μ) : X × X → ℝ is bilinear and f (⋅; μ) : X → ℝ is linear.
Introducing the system matrix and right-hand side

A(μ) := (a(ψj,ψi; μ))
n
i,j=1 ∈ ℝ

n×n, f(μ) := (f (ψi; μ))
n
i=1 ∈ ℝ

n, (13.2)

the solution is obtained by solving the corresponding linear system for the degree of
freedom vector x(μ) = (xi(μ))ni=1 ∈ ℝ

n and subsequent linear combination

A(μ)x(μ) = f(μ), u(μ) =
n
∑
i=1

xi(μ)ψi. (13.3)

The problem is typically assumed to be solvable, e. g., by ellipticity or inf-sup stability
assumptions. Note that by choosing X = ℝn, ψi being the standard basis, we obtain
u(μ) = x(μ) and hence this model formulation also simply covers parametric linear
equation systems of the form (13.3) without the need for a variational form (although
such can easily be constructed [14]).

To enable efficient model reduction, the parametric dependency is assumed to
be based on parameter separable forms (“affine assumption”), i. e., there exist Qa co-
efficient functions θqa : 𝒫 → ℝ, q = 1, . . . ,Qa, which can be rapidly evaluated, and
parameter-independent system components Aq ∈ ℝn×n such that

A(μ) =
Qa

∑
q=1

θqa(μ)A
q

and a similar expansion for f using coefficients θqf (μ) and components fq, q = 1, . . . ,Qf .
We denote the inner product matrix of the space X as

K := (⟨ψi,ψj⟩)
n
i,j=1 ∈ ℝ

n×n, (13.4)

which allows to compute norms (or errors, projections, orthogonalizations, Riesz rep-
resenters for error estimation, etc.), e. g., ‖u(μ)‖X = √x(μ)TKx(μ).

13.2.1.1 White-box reduction scenario

In parametric problems we discriminate between the offline phase (reduced model
construction, potentially computationally expensive and involving full systemcompo-
nents or solves) and the online phase (assembly and solve of reduced system, rapidly
executable). The latter can then be evaluated in many-query contexts. As reduction
technique we consider Galerkin projection. For this, in the offline phase, a matrix
V ∈ ℝn×r is constructed,where r ≪ n indicates the reduceddimension. In RBmethods,
V can be obtained by various techniques, e. g., as concatenation of solution snapshots
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(Lagrangian basis), Gram–Schmidt orthogonalization of such, proper orthogonal de-
composition (POD) (Chapter 2 in Volume 2 ofModel order reduction), or greedy proce-
dures. All of those have in common that several full system solves (for the snapshots)
must be executed and, as mentioned earlier, the inner product matrix K may be re-
quired for orthogonalization.

After basis matrix generation, the full system components are projected,

Aq
r := V

TAqV ∈ ℝr×r , fqr := V
T fq ∈ ℝr (13.5)

for q ranging from 1 to Qa and Qf , respectively. This concludes the offline step.
Then in the online step, for any given parameter μ ∈ 𝒫 only the coefficient func-

tions need to be evaluated and the reduced system is assembled by linear combina-
tion,

Ar(μ) :=
Qa

∑
q=1

θqa(μ)A
q
r , fr(μ) :=

Qf

∑
q=1

θqf (μ)f
q
r . (13.6)

The reduced solution then results via its r-dimensional coefficient vector xr(μ) ∈
ℝr from solving

Ar(μ)xr(μ) = fr(μ).

If reconstruction of the approximate solution is desired (e. g., for visualization, etc.),
the approximation x̃(μ) ∈ ℝn of x(μ) is obtained as

x̃(μ) = Vxr(μ).

By realizing this reduction strategy, an ideal online efficiency is obtained, mean-
ing that the reduced computations in the online stage do not involve any operations
of high complexity n, but only of complexity depending on small quantities r,Qa,Qf .
If a full discretization scheme provides all the required internals to realize the above
reduction and reduced solution steps, we call it a white-box reduction scenario.

Figure 13.1 illustrates and summarizes this decomposition and white-box inter-
play of full-order and reduced-order simulation software.

Note that instead of providing the full-dimensional matrices K,Aq, it can as well
be sufficient that the solver provides suitable matrix–vector multiplication routines.
By this, also PDE discretization schemes that work with matrix-free implementations
can be used in a white-box fashion.

13.2.1.2 Gray-box reduction scenarios

Now, in practice, the full solver packagemaynot give access to all of the details. In par-
ticular, we are not aware of any commercial simulator package giving explicit access
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Figure 13.1: Required functionality and interplay of full (high-dimensional) and reduced solver in
white-box MOR scenario for stationary variational problems.

to parametric matrix components and coefficient functions. We thus call this scenar-
ios gray-box, as the full solver does not give complete insight into the problem, but
still MOR is desired.

Missing K
A first problem may consist in the situation that the full model does not provide an
inner product matrix (13.4). This prevents measuring errors, computing projections,
and orthogonalizations in the correct function space norms.

If geometry information of the underlying mesh and information about the dis-
crete function spaces (polynomial degree, order of the nodes) is available, this matrix
may be constructable “by hand” outside of the simulator code. Still this is of the same
technical complexity as assembling a finite element matrix, which may require con-
siderable effort.

Alternatively, instead of working with the correct K, one could choose certain al-
ternative matrices. This corresponds to choosing another inner product on the solu-
tion space. A common choice isK := In, the identity, i. e., choosing X = ℝn as standard
Euclidean space. Note that this approach is simple but may lead to severely subop-
timal bases as the meaning/weighting of the different entries of the degree of free-
dom vector is not respected. For example, if those degrees of freedom relate to values
on grid cells of largely varying size, the small cells are given the same weight as the
large cells, whichmaymislead basis generation (e. g., when computing a PODwithout
proper weighted inner product) and thus deteriorate the global accuracy. This choice
is common in engineering practice, but should be applied with care. Another choice
for the inner product matrix could be K = A(μ̄) for a fixed reference parameter μ̄ if the
systemprovides a symmetric, positive definite systemmatrix. This choice actually cor-
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responds to the “energy inner product” in case of thermal diffusion problems, which
is known to be beneficial for error estimation [14].

Missing parameter separable decomposition
Most prominently the parameter separable decompositionmaynot be available. Afirst
modification of the procedure could consist of the following. One can omit to work
with components Aq

r , f
q
r , and instead directly assemble the reduced system by projec-

tion of the system matrices during the online phase,

Ar(μ) = V
TA(μ)V, fr(μ) = V

T f(μ). (13.7)

We remark that the definitions of the reduced system and the parameter separable de-
composition in the previous subsection exactly yield this equivalent representation
in the case of parameter separable decomposition. Thus this is no approximation step
but rather a reformulation of computing the reduced system. However, in (13.7) there
is a computational bottleneck, as the assembly of the full system A(μ) and f(μ) is ex-
pensive, in particular polynomial in n. Hence, the online efficiency is sacrificed.

A second way of solving the missing parameter separability is to produce an ap-
proximate parameter separable approximation of the problem. Several approaches
can be found in the literature that help to solve the issue of the missing separable
decomposition in the system components. For the right-hand side vector the discrete
empirical interpolation method (DEIM) [8] can be applied, which will be treated in
more detail in the context of nonlinear unsteady problems in Section 13.2.2. A variant
of this procedure has been formulated for matrices, which is called the matrix DEIM
(MDEIM) [40, 28]. In the online phase this method only requires the evaluation of a
few matrix entries (A(μ))im ,jm for a set of M “magic index pairs” (im, jm),m = 1, . . . ,M.
Still, this pointwise assembly might not be possible or highly inefficient with a given
solver package, for instance, if it only can assemble the complete system matrix and
not single entries. Then obviously, extraction of single matrix entries has complex-
ity polynomial in n due to the required assembly of the complete matrix. But if this
local entry assembly is possible in an effective way, then this procedure can be online-
efficient. Also, the procedure can generate an exact parametric representation: If the
parametric matrices lie within a finite-dimensional space, this MDEIM procedure will
find such an exact representation, whereM is exactly the dimension of this covering
finite dimensional space.

An alternative can be parametric regression or interpolation of system matrices
[41], denoted as “operator extraction”: Based on a given set of system matrix snap-
shots, a polynomial approximation or interpolation in the parameters is realized and
successfully used. In the onlinephase, access toneitherA(μ)nor its entries is required,
recovering the ideal online efficiency. However, no error control for assessing the para-
metric approximation quality is possible by this approach.
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We want to mention another approach in a PDE context, which was coined the
“two-gridfinite element/reducedbasis approach” [7]:One constructs aRBon thegiven
(fine) grid in a traditional way, e. g., Lagrangian, POD, or greedy basis. Then in the on-
line phase, for a newparameter, a full problem is solvedbut on a coarsermesh. Finally,
this coarsemesh solution is projected on the obtained (finemesh) RB. By this, missing
details on the coarse mesh are potentially included in the projected solution, as such
fine details are contained in the fine mesh snapshots/RB. The computational cost in
the online phase clearly is not online-efficient as it depends on the coarse mesh reso-
lution. But it still can be computationally faster than solving the full problem on the
fine mesh. In this method, internal details on the geometry, in particular the nesting
of the two meshes, are required, and details on the discrete function spaces, in order
to compute the prolongation operator for mapping the coarsemesh solution degree of
freedom vector to a fine mesh degree of freedom vector, one further needs the inner
product matrix for projection onto the RB.

So overall, in the case of themissingparameter separable decomposition gray-box
scenario, either one sacrifices the ideal online efficiency while maintaining accuracy
of the reduced model, or one must accept another approximation stage in the reduc-
tion chain for obtaining the optimal online runtime complexity.

These are themost common approaches of workarounds or “hacks” aroundmiss-
ing system information for stationary problems.

13.2.1.3 Black-box reduction scenario

We denoted the previous section as gray-box, even if some references rather call their
approaches black-box. The reason for our nomenclature is that the mentioned ap-
proaches still require some insight into the discretization or sampling of system com-
ponents, i. e., knowledge of and access to the system structure. In contrast to this, the
real notion black-box would be even more restrictive as not allowing any insight into
the system components or discretization. The most limiting situation would be that
the system only is observable via input–output pairs (μi,x(μi)), i = 1, . . . , ntrain. Then,
based on these training data, machine learning approaches could be used to infer a
functional relation between the input parameters and the solution (degree of freedom
vector), e. g., kernel methods (Chapter 9 in Volume 1 ofModel order reduction), or neu-
ral networks. As a learning of a high-dimensional quantity (degree of freedom vector
x(μ)) may suffer from the curse of dimensionality, we recommend to first identify a
subspace (e. g., by POD) with suitable basis matrix V corresponding to an orthogo-
nal basis; then the training data can be projected orthogonally to the reduced space
(μi,VTKx(μi)) and themapping from input parameters to reduced state vectors can be
learned. Such an approach, however, does not involve any knowledge about the sys-
tem structure. Alternative approaches would consist of assuming a certain (paramet-
ric) system structure and inferring the missing parameters purely from the observed
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data. These approaches in MOR are denoted to be “data-driven.” In control theory
such problems already have a long tradition in the area of system identification. As
this, however, is not so much related to MOR software and interplay between full and
reduced solvers, we do not comment on such options.

13.2.2 Model 2: time-dependent ODE systems

As second model we assume to have a time-dependent nonlinear ODE system,

ẋ(t) = f(x(t),u(t)), x(0) = x0, (13.8)

on a time interval [0,T] with final time T ∈ ℝ ∪ {∞}, unknown state x : [0,T] → ℝn,
input u : [0,T] → ℝnu , and system nonlinearity f : ℝn × ℝnu → ℝn. Continuity of
the right-hand side then implies existence of a solution. Additionally, there may be an
output y : [0,T] → ℝny , which, for simplicity, we assume to be linear in the state

y(t) = Cx(t)

for C ∈ ℝny×n. We now focus on local evaluations of the system nonlinearity, as this
will be the key for full online-efficient reduction. For a given set of few indices I =
{i1, . . . iM} ⊂ {1, . . . n} with typically M ≪ n (e. g., DEIM “magic indices,” Chapter 5 in
Volume 2 ofModel order reduction), we define

fI := (fi1 , . . . , fiM )
T (13.9)

as local evaluation of f = (fi)ni=1. We now require the following, which are typically
nontrivial for given off-the-shelf simulation packages:
(i) The local evaluation fI can be computed without assembling the full nonlinear-

ity f.1

(ii) The evaluation of those components can be performed rapidly based on only a
subset of the state vector x = (xi)ni=1 in the following sense: There exists an in-
put index subset ̄I := { ̄i1, . . . ̄iM̄}, typically with n ≫ M̄ ≥ M, that defines x ̄I :=
(x ̄i1 , . . . , x ̄iM̄ )

T ∈ ℝM̄ as the restriction of x to the indices ̄I. Then we assume that

there exist functions ̄fim : ℝ
M̄×ℝnu → ℝ,m = 1, . . .M, such that fim (x,u) =

̄fim (x ̄I ,u).
This means that overall there is a function ̄fI := ( ̄fi1 , . . . ,

̄fiM )
T : ℝM̄ × ℝnu → ℝM

satisfying

̄fI (x ̄I ,u) = fI (x,u) (13.10)

1 Note that in the DEIM literature frequently the sampling matrix P := [ei1 , . . . eiM ] ∈ ℝ
n×M is defined,

where ei ∈ ℝn denote the standard Euclidean basis vectors. Then we verify that fI = PT f, but the
latter equation may give the wrong understanding that the sampling matrix multiplication is a com-
putational recipe, which it is not, as this is of complexity n. Thus, we refrain from adopting this DEIM
notation here and use the definition (13.9).
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for any x and u. We emphasize thatM, M̄, nu typically are small, thus this function
̄fI can be evaluated in complexity independent of n, and hence is online-efficient.
If the system corresponds to a discretized PDE these properties are useful (and re-
alistic): Property (i) corresponds to a local evaluation of the system nonlinearity
in a few grid points. Property (ii) means that such a pointwise evaluation, e. g.,
of a finite difference pencil, only requires the knowledge of the state in a local
neighborhood around the evaluation grid points, also understandable as a sub-
mesh. This property is typical for discretizations of differential operators using
basis functions of local support such as finite difference, finite element, finite vol-
ume, or discontinuous Galerkin bases. If the model has some physical meaning,
there may exist a weight matrix K ∈ ℝn×n that represents a physically relevant
inner product and norm ‖x‖K := √xTKx.

13.2.2.1 White-box reduction scenario

Note that for linear time-invariant (LTI) systems, i. e., f(x,u) = Ax + Bu, there are
plenty of reduction strategies, e. g., approximating the state trajectories for special in-
put signals (snapshot-based such as POD, POD-greedy using the proper inner product
given by K) or approximating the input–output behavior in some sense (e. g., optimal
ℋ2-approximation, moment-matching, Hankel norm approximation, etc. [2]). Again
for simplicity, we assume to have some basis V ∈ ℝn×r with r ≪ n of orthogonal
columns obtained by orthogonalizing any basis matrix of any of the mentioned pro-
cedures.

Then, a straightforward Galerkin projection of the system results in an approxi-
mation x̃ := Vxr with xr : [0,T] → ℝr being the solution of

ẋr(t) = V
T f(Vxr(t),u(t)), xr(0) = xr,0, (13.11)

with initial data projection xr,0 := VTx0 and potential output approximation ỹ(t) =
Cx̃(t) = CVxr(t). Even though this is a low-dimensional model, it is not online-
efficient, as (a) the reconstruction Vxr, (b) the nonlinearity evaluation, and (c) the
projection VT f are operations of the original complexity n. This is a well-known com-
putational bottleneck of reduction methods such as POD. In fact, the integration
of (13.11) may even be more expensive than integrating the original system (13.8), ren-
dering the reduced model practically useless. To decrease this computational com-
plexity, sampling-based approximations of the nonlinearity are applied, for example
by gappy POD [11] or POD-DEIM [8]. Here, a further approximation stage is employed:
An additional basis matrix U is assumed that approximates f well by ̃f := Uc. The
coefficient vector c is computed by a linear transformation of a local nonlinearity
evaluation c := MfI as introduced in (13.9). This can both be an interpolation-type
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approximation, e. g., DEIM,2 but as well a least-squares approximation by oversam-
pling of f. In both cases, U must approximate the range of f well, such as obtained
by an additional POD of snapshots of the nonlinearity [8], or a greedy basis based
on f snapshots (cf. the early references [16, 15]). If we replace f by ̃f in (13.11) and use
VT ̃f = VTUMfI =WfI withW := VTUM ∈ ℝr×M and (Vxr) ̄I = V ̄Ixr with V ̄I ∈ ℝ

M̄×r con-
taining the rows of V corresponding to the indices in ̄I, we obtain a “hyperreduced”
model as alternative to (13.11):

ẋr(t) = V
T ̃f(Vxr(t),u(t)) =WfI(Vxr(t),u(t)) =W ̄fI(V ̄Ixr(t),u(t)), (13.12)

assigned with the identical initial conditions and a potential output as (13.11).
We give some intuition about the operations involved in solving such a system:

In the offline phase the initial state is projected, i. e., xr,0 is computed, and the small
matrixW is assembled. Also we identify the appearance of a restriction of an RB V ̄I .
This means, for example in the case of a finite difference discretization, that the RB
needs to be stored nodewise on “all” finite difference nodes in the stencils around
the sampling points I. This matrix is of small size. Now, when turning to the online
phase, i. e., integrationof (13.12),we clearly see the requirement of repeated evaluation
of the local nonlinearity evaluation function ̄fI that we assumed to be available by
the high-fidelity model and should be rapidly evaluated in a complexity independent
of n. Also, instead of reconstructing the full state approximation Vxr as required in
the model (13.11), the hyperreduced model only requires a local reconstruction of the
approximated stateV ̄Ixr which corresponds to the values of the reduced solution on a
subgrid defined by the indices ̄I. This local reconstruction of the state then is sufficient
to exactly evaluate the system nonlinearity in the local sampling points required for
the evolution of the reduced model.

This concludes the “clean” white-box reduction scenario. We are not aware of im-
plementation of all of the full model requirements in commercial packages to real-
ize this. In particular the rapid local evaluation of the system nonlinearity is an ex-
tremely intrusive – and mostly also code-intrusive – requirement of making complex
discretization packages suitable for online-efficient model reduction. Some publica-
tions that presented this ideal reduction for nonlinear problems include [16, 10, 8].

13.2.2.2 Gray-box reduction scenario

Now again, as white-box scenarios are rarely implemented in usual high-fidelity sim-
ulation packages, we again must refrain to gray-box scenarios.

2 Note that in the case of the DEIM, the matrixU is of size n×M andM = (PTU)−1. Then obviously the
interpolation property is verified:

PT ̃f = PTUMfI = P
TU(PTU)

−1
fI = fI = P

T f.

.
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Missing inner product weighting matrix K
If no weighting matrix K is available by the full model, the same workarounds as in
Section 13.2.1.2 apply, i. e., workingwith the Euclidean inner product or reconstructing
K by potential knowledge about the underlying PDE discretization.

Missing local evaluation routine ̄fI
In the context of nonlinear problems, the main problem is a potential missing local
evaluation routine. If no access to the full model apart from full samples of f are possi-
ble, then one could sacrifice online efficiency for accuracy and just accept the (ineffi-
cient) nonhyperreducedmodel (13.11). Asmentioned above, conceptually a dimension
reduction will be obtained by this, but no or limited computational gain is to be ex-
pected.

If aiming at online efficiency, one can add yet another approximation stage, e. g.,
realized by the Kernel-DEIM approach [39, p. 83ff], [22]: The idea is to provide kernel-
based approximants for the local function evaluations: fim (Vxr) ≈

̂fim (V ̄Ixr), where
̂fim is for instance a kernel interpolant or a more general approximant (Chapter 9 in
Volume 1 ofModel order reduction). This can be constructed purely based on state and
nonlinearity snapshots.

Missing local evaluation set ̄I
If the discretization/interpretation of the full model is unknown, it may be a priori un-
clear which state entries influence the required sampling entries of the nonlinearity,
i. e., the index set ̄I may be unknown. A general approach for this is suggested: If the
full nonlinearity of the system can be sampled, snapshot-based POD can be computed
and a DEIM can be executed resulting in a possible choice of sampling points I. Now,
the set of indices ̄I that themagic index evaluations dependonmust be generated.One
possibility for this is analysis of the Jacobian of f (which clearly requires this as addi-
tional functionality from the full solver): The nonzero entries in row im of the Jacobian
indicate those entries of the input state vector that induce changes in the value of f.
Thus, analysis of the sparsity pattern of ∇f is sufficient for identification of the set ̄I.

Alternatives
Now clearly, also other gray-box approaches can be followed if one refrains from the
above Galerkin projection structure. For instance by working with state and velocity
snapshots of a linear system, dynamicmode decomposition (DMD) [25] allows to infer
an approximate linear model. Note that velocity, i. e., nonlinearity snapshots, require
a sort of intrusiveness as this is more than just state observations, and therefore not
black-box. If a system can be observed in terms of input and output observations in
frequency space, then the Loewner framework [20] enables to efficiently find an ap-
proximate LTI realization of a system with the observed behavior. For parametric un-
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steady problems, e. g., LTI systems, the parametric matrix interpolation idea can also
be applied (e. g., [13]).

13.2.2.3 Black-box reduction scenario

The mentioned gray-box approaches still assumed to have access to the systems non-
linearity (or frequency response measurements). Now, what can be done if the only
way of accessing the system consists of sampling state trajectories and outputs? First,
a direct mapping of input state to output quantities can be approximated with ma-
chine learning techniques.However, such techniquesdonot involve anymodel knowl-
edge nor model assumptions. If one assumes a certain model structure, i. e., linear or
polynomial nonlinearity for f, then the system coefficients of a reduced model can be
inferred from observed data [31]. In control theory this field is long known as system
identification.

If one is interested in approximating x instead of an output, the prediction of
a high-dimensional target quantity may suffer from the curse of dimensionality. So
blended approaches combining model reduction and machine learning exist. For ex-
ample [38] suggest a nonintrusive reduced-ordermodel (ROM) approach for nonlinear
problems combining POD and neural networks: By sampling state trajectories, a suit-
able approximating space/basis V can be computed by POD. Then each of the state
snapshots can bemapped to the POD space, obtaining POD coefficients. Then a neural
network can be learned to map time to the POD coefficients, which thus directly pre-
dicts an approximation of the state even without integration of a dynamical system.

13.2.3 Coupling techniques

In the abovewe have seen that online efficiency inMOR is based on a tight interplay of
full-order solvers and MOR implementation. This requires information exchange be-
tween those levels in suitable ways. Therefore, we now discuss the main two different
coupling options for MOR software. As additional reference on the coupling aspect,
we want to point to a presentation that also discusses various approaches for MOR
interfaces,3 with a focus on motivating the package pyMOR as mentioned in the next
section.

Write high-dimensional data to disk
Theprinciple is the following: The full solver is agnoscent of the reduction schemeand
reduction package but provides required high-dimensional data by file output, e. g.,
finite element method system matrices, or system matrix components (in the case of

3 https://www.stephanrave.de/talks/cse_2015.pdf
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parameter separability) L2 or H1 scalar product weight matrices, grid description for
visualization, etc. Also, the user or the full solver then must provide or export the co-
efficient functions of the separable parameter decompositions as function strings, etc.

The reduction scheme or MOR package then needs to import these data, project
the high-dimensional objects to low-dimensional quantities, assemble the reduced
system, and rapidly solve the reduced system. Potentially, the MOR code exports then
high-dimensional state approximations for visualization or postprocessing by the full
solver package. We refer again to Figure 13.1 for illustration of these exchange steps.

This approach by file exchange is applicable for linear problems or even problems
with low polynomial structure or suitably Taylor-approximated systems.

There are several advantages or beneficial options resulting from this decomposi-
tion: One can realize a straightforward coupling of different programming platforms
for the full and MOR solvers by only agreeing on a joint file format. By this, the MOR
code can be written in language of choice and can be agnoscent of the programming
language of the full system. Also, full solvers can be easily exchanged. One can realize
a full decoupling of high-dimensional offline and online operations.

Some drawbacks and limitations of this approach are apparent: The reduced
model simulation might be slow due to the disk access bottleneck. Further, the MOR
code needs to process high-dimensional data. File export routines for the full solver
must be implemented, which might be nontrivial (e. g., mass matrices in matrix free
full solvers). This file exchangedoes notwork for nonlinear problemsor problemswith
complex parametric system components unless gray-box strategies, i. e., “hacks” or
approximations of the preceding sections, are applied. Also, this full decomposition
of offline and online phases prevents modern adaptive simulation schemes, where
offline and online phases are blended (e. g., optimization with reduced model adap-
tation, local MORwith adaptive basis enrichment, etc.). It may be that iteration of full
solver steps, reduced system creation, and solve are impossible or difficult.

Alternatively, thefile exchange canalso bebasedonly on reducedquantities, if the
full solver package is extended by MOR basis generation and projection functionality.
Then the MOR package only needs to read reduced quantities, solve reduced systems,
and communicate reduced coefficient vectors to the full solver package that is respon-
sible for visualization/postprocessing.

Communication of full and reduced solver by function interfaces
The principle here is that the full solver is extended in order to provide function access
to high-dimensional quantities used for the reduction, e. g., inner product matrices,
system nonlinearities, etc. An improved approach even consists in avoiding access to
matrices, but only providing access to matrix–vector multiplication for inner-product
matrices or system matrices.

This offers some clear advantages: It is potentially very fast if optimal and min-
imally invasive connection to the full solver is realized. Nonlinear problems can be
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treated by giving the MOR package access to the exact system nonlinearity. The pro-
visioning of matrix–vector multiplication routines allows matrix-free operations, and
hence MOR for discretizations that do not rely on matrix representations (e. g., finite
volume or finite difference discretizations). A potential tight and repeated interaction
between full and reduced solvers is possible in modern simulation scenarios with
adaptive ROMs such as in optimization or local MOR. If those function interfaces are
designed in a minimal and generic way, very general model reduction is possible, as
various full solvers can implement those interfaces and various MOR packages can
use those different full solver interface implementations. If the interface classes make
use of (references to) high-dimensional objects stored in the full solver’s memory, no
communication of high-dimensional data is required, and the MOR code can be very
fast and memory-efficient.

Again, also clear disadvantages appear: This approach is more complex as cou-
pling via online bindings, shared libraries, mex-interfaces, or network communica-
tion, etc., is required. The realization of the required internal accessmay be difficult or
impossible in certain full solver packages (e. g., local system matrix access to matrix-
free discretization operators).

13.3 MOR software packages
After these conceptual aspects of MOR software, we want to become very specific in
this section and give an overview of existingMOR software packages. First we address
commercial packages, which we understand as being developed by companies with
commercial interest. Then, we give a brief survey of academic packages, developed at
universities or public research institutions. By the overview of this section, users may
be guided (to some extent) to select the suitable packages for their application case.

13.3.1 Commercial packages with MOR functionality

Many simulator packages have realized the need and usefulness of model reduction
on top of the traditional simulation chain. The following is a short and certainly in-
complete list of such commercial packages. We do not go into details but refer to the
corresponding websites. Mostly – but with notable exception of Scilab – the following
packages are closed-source and subject to license fees.
ANSYS® (CADFem):4 The packageModel Reduction inside ANSYS provides reduction

techniques for linear systems, in particular three-dimensional finite element from
ANSYS MechanicalTM, enabling piezoelectrical and thermomechanical models.

4 https://www.cadfem.de/produkte/cadfem-ansys-extensions/model-reduction-inside-ansys.html
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The resulting low-dimensional matrices can be imported in ANSYS Simplorer®,
MATLAB/Simulink, or other system simulation languages VHDL-AMS or SPICE.
An early reference to the initial version “MOR for ANSYS” has been published [3].

Akselos Integra™(Akselos):5 This package enables numerical simulation of large-
scale mechanical assets. Among others, the underlying technique is the static
condensation RB element method [19]. Being based on reduction of components,
this technique is very suitable for technical component-based structures. Linear
systems can be treated, as well as systems with local nonlinear subsystems.

CST MICROWAVE STUDIO® (CST):6 In order to obtain networkmodels, that are com-
patible with the circuit simulator SPICE and have the same port behavior as three-
dimensional structures, suitable MOR techniques can be applied. In particular
stability and passivity preservation is obtained by the reduction techniques.

MATLAB®7 (The Mathworks, Inc.):8 In its control system toolbox various control-
theoretic reduction techniques are provided, in particular pole zero simplifica-
tion, mode selection or balanced truncation (BT) (Chapter 2 in Volume 1 ofModel
order reduction). These methods are available in the Model Reducer App, which
can be interactively used.

MOR toolbox (MOR DIGITAL SYSTEMS):9 The MOR toolbox is a MATLAB-based tool-
box gathering algorithms for (i) reduction of large-scale linear dynamical models
and (ii) creation of linear dynamical models from input–output frequency data.
The algorithms gathered in the MOR toolbox generate a linear state-space model
whose input–output behavior is close to the initial model. Somemethods take ad-
vantage of the sparse nature of the models and can therefore be applied to very
large-scale models with several thousands of states. Such models arise very often
in physics, biology, etc. The MOR toolbox is free for academic use, and licenses
are available for commercial purposes.

SLICOT (Niconet e.V.):10 This collection of MATLAB toolboxes also contains a SLI-
COT Model and Controller Reduction Toolbox, providing algorithms for many
control-theoretic reduction methods, e. g., BT, singular perturbation approxima-
tion, frequency-weighted balancing, Hankel norm approximation, or co-prime
factorization.

SciMOR (ESI Group, Scilab Enterprises SAS):11 This model reduction toolbox has re-
cently been developed and providesmodern techniques for reduction of paramet-

5 https://akselos.com
6 https://perso.telecom-paristech.fr/begaud/intra/MWS_Getting_Started.pdf
7 We acknowledge MATLAB to be a registered trademark throughout this chapter, but for readability
refrain from indicating this at various further occasions.
8 https://de.mathworks.com/help/control/ug/about-model-order-reduction.html
9 http://mordigitalsystems.fr/en/
10 http://slicot.org/matlab-toolboxes/model-reduction
11 https://scilab.io/scilab-model-reduction-toolbox
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ric PDEs. In particular, POD in combination with parameter interpolation is im-
plemented. This toolbox is part of the Scilab open-source project with the goal of
democratizing computational science and is free of charge.

There are some common limitations with most of those MOR implementations: Apart
from very recent developments, those commercial packages typically do not provide
the most efficient latest MOR methods. This in particular holds true for packages that
are alreadymore than 10 years old, as the last decade has shown tremendous improve-
ment in MOR technology. In these packages, in particular the full models are typically
not fully accessible. As discussed in the previous sections, this prevents white-box
implementation of modern reduction techniques, whichmostly require a high level of
intrusiveness.

13.3.2 Academic MOR software packages
Next, wewant to give short descriptions of existingMOR software packages developed
by groups from academia. The packages are free of charge, butmay be subject to some
licensing options. The packages are mostly open-source, except two of them, which
are not publicly available for download. Typically, those packages are developed at
universities or public research institutions.

The software packages differ in various aspects. In addition to the open-source
policy, the main aspect is the programming language. Differences can also be ob-
served with respect to the ease of installation, whether paper references are given,
and whether documentation, benchmark models, or tutorial examples are provided.
Some packages are under active development by large development teams, while
some are single-programmer projects that resulted from PhD theses and are “frozen”
or only updated in a minimal fashion. Large differences exist in the provisioning of
full-scale solvers within the package and the extent of the coupling to external high-
fidelity models/solvers. The purpose of those packages can be either fundamental
research, teaching, or even industrial application. The physical application fields
also vary widely: Some packages only support one application domain (e. g., elec-
tronics or mechanical systems) while others do not restrict the type of applications,
but allow all kinds of physical domains, including electronics, fluid dynamics, biol-
ogy, chemistry, finance, etc. Most discriminating are the types of systems that can be
reduced such as LTI systems, nonlinear ODE systems, parametric problems, elliptic
PDEs, parabolic PDEs, hyperbolic PDEs, first-order systems, second-order systems,
differential algebraic equations (DAEs), and parametric, dense, or sparse systems. Fi-
nally, the implemented reduction techniques are very different in the packages, e. g.,
BT, moment-matching (Chapter 3 in Volume 1 ofModel order reduction), RB methods,
POD, Hankel norm approximation, optimalℋ2-norm reduction, etc.

In Table 13.1 we give some metadata for several packages from academic devel-
opment teams that are available at the time of finalization of this overview, i. e., June
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Table 13.1:Metadata of academic MOR software packages (as of Aug. 2019).

Acronym Ref. Language License type Latest version

DPA [33] MATLAB/Octave – Nov. 2015
emgr [18] MATLAB/Octave BSD-2-Clause 5.8, May. 2020
ITHACA [36] C++ LGPL 3.0 / MIT License Mar. 2020
KerMor [39] MATLAB GNU GPL & BSD 0.9, Aug. 2015
M.E.S.S. [34] MATLAB/Octave, C GNU GPL 2 2.0.1, Feb. 2020
MOREMBS [12] MATLAB, C++ – on request
MORLAB [5] MATLAB GNU Affero GPL 3 5.0, Dec. 2019
MORPACK [26] MATLAB – on request
pyMOR [27] Python BSD-2-Clause 2019.2, Dec. 2019
RBmatlab [14] MATLAB – 1.16.09, Sept. 2016
RBniCS [17] Python GNU lesser GPL 3 v0.1.0, Jun. 2019
SparseRC [21] MATLAB – Nov. 2011
sssMOR [6] MATLAB BSD-2-Clause v2.00, Sept. 2017

2020. We do not express any preference by the order of the packages but present them
in alphabetic order. For each of the packages we give a reference that either is specif-
ically devoted to that software package or is a reference using that package. We spec-
ify the corresponding (main) programming languages, not excluding that some of the
packages provide bindings or some optimized routines for some other language. Most
of the packages are MATLAB-based, some using as little MATLAB-specific function-
ality that they are also executable from Octave. The packages devoted to MATLAB or
Python do mainly not have restrictions on the operating system, as long as MATLAB
or Python is installed in corresponding versions. Only the package versions providing
C/C++ versions typically are limited to either Windows or Linux operating systems.
About half of the packages specify some open-source GNU- or BSD-type license. The
column“latest version” lists versionnumbers and release dates if providedby the sup-
porting websites. Some packages do not provide access by download but only on re-
quest, in particular packages that are used for simulation ofmultibody systems (Chap-
ter 2 in this volume). The recent release dates indicate that most of the packages are
under active development andwe recommend to consult the correspondingwebpages
and github sites for most recent information. Especially the packages maintained at
github frequently have most recent commits that yield functional versions more re-
cent than the latest release tags given in the table. In particular we want to emphasize
that the following detailed descriptions may relate to more recent git-commits than
the versions mentioned in the table. In the context of MOR software, we want also to
refer to the excellent software list at theMORWiki.12 Note that, by nature, our package
list has a considerable overlap to that online reference list.

12 http://www.modelreduction.org
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Wenowgive somemore details on the packages, including nonabbreviated name,
open-source policy, online availability, license type, download (or project) URL, pro-
gramming language, installation procedure, documentation, main reduction meth-
ods, application fields, and further individual comments.
DPA:13 A collection of MATLAB algorithms related to versions of the Dominant Pole

Algorithm [33] are provided for download as source code without license restric-
tions. No installation steps are required, and operation is performed via simple
execution of the *.m files. Documentation is available as comments in the pro-
gramfiles. Reduction by thosemethods is related tomodal reductionwith connec-
tions to moment-matching (Chapter 3 in Volume 1 ofModel order reduction). The
algorithms allow reduction of first- and second-order single-input, single-output
systems and first-order multiple-input, multiple-output systems. The motivating
field of application is power system electronics, but the code can be used for re-
duction and modal analysis of dynamical systems from other domains as well,
including electronics (RLC parasitics), acoustics, andmechanics. Quite a number
of test systems and (large-scale) system matrices are provided.

emgr:14 The MATLAB/Octave package provides an Empirical Gramian Framework [18]
for model reduction of nonlinear input–output systems. The program files are
available for download under the open-source BSD-2-clause license. No installa-
tion steps are required, as the singleMATLABfile can directly be executedwithout
dependency on further packages. The empirical Gramians basically extend the
concept of system Gramians for first-order LTI systems (Chapter 2 in Volume 1 of
Model order reduction) to nonlinear systems. Overall, these reduction techniques
can be related to BT. For parametric problems with high-dimensional parame-
ter spaces, empirical Gramians also allow combined reduction of parameter and
system order. Due to its generality, there is no restriction to the field of applica-
tion:Models fromneural science,mechanical systems, electrical networks, or dis-
cretized PDEs are contained as benchmark systems on thewebsite. Extensive doc-
umentation of the programs is also provided online.

ITHACA:15 This C++ package on In real Time Highly Advanced Computational Ap-
plications comes in several versions: ITHACA-FV with finite volume full-order
solver https://mathlab.sissa.it/ITHACA-FV [36, 37] basedonOpenFOAM, ITHACA-
SEM with spectral element detailed solver https://mathlab.sissa.it/ITHACA-SEM
based on Nektar++ and ITHACA-DG https://mathlab.sissa.it/ITHACA-DG based
on discontinuous Galerkin full-order solver based on HopeFOAM. All versions
are open-source, the former under a LGPL license, the latter two under an MIT
License. The packages’ code and documentation are available on corresponding

13 https://sites.google.com/site/rommes/software
14 https://gramian.de
15 http://mathlab.sissa.it/
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github pages. The packages ITHACA-SEM and ITHACA-DG are at an early de-
velopment stage, thus we focus on the more mature ITHACA-FV package in the
following: The installation of ITHACA-FV requires an existing implementation of
OpenFOAM 5.0, 6.0, or 1812, and then the cloning and compilation of the package
are realized with few commands. The package provides several well-documented
tutorial examples. The documentation is extracted from the code by doxygen.
The package provides the implementation of several reduced-order modeling
techniques for parameterized problems. In particular, the thermal block, steady
and unsteady Navier–Stokes, additionally coupling with an energy equation, and
the Boussinesq equation are contained. As reduction techniques, POD, nonintru-
sive POD-interpolation, DEIM (Chapter 5 in Volume 2 of Model order reduction),
and DMD (Chapter 7 in Volume 2 ofModel order reduction) are provided.

KerMor:16 TheMATLABpackageprovidesKernel andMORmethods for surrogatemod-
eling of nonlinear systems [39]. It is open-source partly under the GNU GPL 3 and
BSD license. The source files are maintained and are accessible freely at a cor-
responding github repository. The package is using sophisticated object-oriented
features of MATLAB, and hence is not suitable to be used under Octave. Program
documentation is provided online but can as well be generated offline by the
mtoc++ and doxygen documentation tools. After download or cloning of the pack-
age, some installation steps are required for compiling suitablemex functions and
setting environment variables. Then a single startup file needs to be executed in
MATLAB in order to use the package. The considered model classes are simple
IO function maps, LTI and parametric nonlinear systems. As surrogate model-
ing techniques, mainly projection-based methods (POD-DEIM) (Chapter 5 in Vol-
ume 2 ofModel order reduction) and kernel methods (VKOGA, SVR) (Chapter 9 in
Volume 1 of Model order reduction) are provided. The field of application is not
limited, demo examples contain electric circuit as well as system-biological (pro-
grammed cell death) models, discretized PDEs (Burgers), or biomechanics (non-
linear elasticity for muscle models).

M.E.S.S.:17 The Matrix Equation Sparse Solver library [34] provides algorithms for
approximate matrix equation solving such as large-scale Lyapunov or (differen-
tial) Riccati equations. Since the solution of suchmatrix equations represents the
core of many algorithms in model reduction and control, this package is essen-
tial for reduction of large-scale problems. The package consists of a version for
MATLAB/Octave and a version for C; additionally it provides Python bindings.
The code is accessible via a public git repository and covered by a GNU GPL 2
license with some exceptions. The MOR functions comprise BT and the iterative
rational Krylov algorithm (IRKA) (Chapter 3 in Volume 1 ofModel order reduction)

16 https://www.morepas.org/software/kermor/index.html
17 http://www.mpi-magdeburg.mpg.de/projects/mess
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for first-order LTI systems. Documentation is provided within the MATLAB source
files. Installation is straightforward by simple unpacking and a startup script
for initialization at each MATLAB session. Due to its generality, model examples
both contain discretized transport PDEs (heat equation, advection-diffusion) and
mass-spring-damper systems for structure-preserving second-order techniques.
Further demonstration examples explain the extension to structuredDAE systems
that allow for implicit index reduction.

MOREMBS:18 This package on Model order reduction for elastic multibody systems
[12] consists of both a MATLAB version (MatMorembs) and a C++ version
(Morembs++). The package is not available for download, but can be provided on
request for academic use. The supported reduction techniques for second-order
systems comprise modal techniques such as the Craig–Bamptonmethod for com-
ponent mode synthesis (CMS), as well as Krylov subspace techniques (Chapter 3
in Volume 1 of Model order reduction) or SVD/Gramian-based techniques (Chap-
ter 2 in Volume 1 of Model order reduction). The field of application is clearly
focused on elastic mechanical systems. The strength of the package lies in a mul-
titude of coupling options, in particular importing system matrices from various
commercial finite element programs (ABAQUS,ANSYS, PERMAS,Nastran) and ex-
porting reduced system descriptions to multibody simulator programs (MATLAB
Simulink, SIMPACK, Neweul-M2, Adams, LMS).

MORLAB:19 ThisModel Order Reduction LABoratory package [5] is aiming for spectral-
projection-based model reduction of dynamical systems. It is freely available for
download as a MATLAB toolbox, Octave package, or zip archive. The package is
subject to the GNU Affero General Public License 3. Installation is simple by exe-
cuting a startup file for adding paths or by using the automatic mechanisms for
MATLAB toolboxes and Octave packages.
There is an extensive HTML documentation included in the package. The pack-
age aims at dense first-order LTI, descriptor, or second-order systems. The spec-
trum of methods is based on the solution of matrix equations [29], in particular
modal truncation, BT with many variants (frequency-limited BT, time-limited
BT, bounded-real BT, positive-real BT, balanced stochastic truncation, linear
quadratic-Gaussian BT, and ℋ∞-BT), as well as a variant of the Hankel norm
approximation. Due to its generality of systems, the package does not focus on
special application fields.

MORPACK:20 This Model Order Reduction PACKage is a MATLAB library for reduc-
ing elastic multibody systems [26, 24]. The package is not available for download
but test versions for academic purposes can be provided on request. The appli-

18 http://www.itm.uni-stuttgart.de/research/morembs/MOREMBS_en.php
19 http://www.mpi-magdeburg.mpg.de/projects/morlab
20 https://tu-dresden.de/ing/maschinenwesen/ifkm/dmt/forschung/projekte/morpack
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cation field is limited to second-order mechanical systems for elastic multibody
dynamics. The package acts as a general interface between finite element soft-
ware (ANSYS, ABAQUS, NASTRAN, LS-DYNA) and themultibody simulators (SIM-
PACK, ANSYS, EMBS-Matlab). Therefore, validation of the reduction and choice
of the master degrees of freedom have a high priority. Over 60 correlation criteria
are available to compare reduced-order models against the original model as well
as measurement data. Likewise, there are manymethods to select optimal master
degrees of freedom. The reduction methods that are available comprise Guyan,
CMS, Krylov subspace methods, (second-order) BT, and minimal model genera-
tion by mode truncation. Also multistep reduction processes can be performed.
The package is steered by a graphical user interface. Several benchmark models
are provided ranging from 100,000 to 1,200,000 degrees of freedom.

pyMOR:21 TheModel Order Reduction with Python package is an open-source library
under active development [27]. It is accessible by a repository at github under
a (modified) BSD-2-Clause license. Installation basically works via pip, and de-
tailed installation instructions are given on the website. Extensive program doc-
umentation is provided online and within the program source code. The pack-
age aims at covering all types of reduction techniques, ranging from RB methods
for parameterized PDEs up to MOR for control systems, e. g., BT or Krylov sub-
space methods. Also general nonlinearities can be treated by empirical interpo-
lation (Chapters 1 and 5 in Volume 2 of Model order reduction). Due to its gener-
ality, no application fields are excluded. By using abstract interfaces, coupling of
external high-fidelity solvers is possible and several of such dockers exist, e. g.,
for Dune, FEniCS, deal.II, or NGSolve. Also, some finite element and finite vol-
ume discretizations are included based on NumPy/SciPy. Two jupyter notebooks
are provided for interactive exploration of corresponding models (heat equation,
spring) and reduction techniques. Many demo applications are contained within
thepackage suchas PDE-basedmodels (Burgers equation or elliptic andparabolic
equations).

RBmatlab:22 The Reduced Basis Matlab package is an open-source library for numer-
ical approximation of parameterized problems. The code is publicly available for
download via the Model Reduction of Parametrized Systems (MoRePaS) website
without license restrictions. The master branch is maintained as a git repository,
for which access can be granted on request. Documentation is provided online
and within the MATLAB function headers. This documentation can be generated
offline by the mtoc++ and doxygen tools. Installation is simple by unzipping, set-
ting two environment variables, and optionally extending the MATLAB startup
script to get RBmatlab started automatically during the initialization of each

21 https://github.com/pymor/pymor
22 https://www.morepas.org/software/rbmatlab
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MATLAB session. As system types parametric PDEs (elliptic, parabolic, hyper-
bolic) mostly motivated by transport problems (heat equation, Burgers equa-
tion, two-phase flow), mechanics (elasticity), or finance (variational inequalities)
are supported, as well as parametric control systems, e. g., the chemical master
equation. Snapshot-based reduction methods (POD, greedy, POD-greedy) are im-
plemented, including certification by error estimators. Coupling to the scientific
computing packages Dune, Alberta, and COMSOL is realized. Additionally, the
package contains PDE discretization techniques (finite element method, finite
volume method, discontinuous Galerkin) to be used as high-fidelity solvers for
reduction procedures. Use of those reduced models in parameter optimization
and feedback control are some of the implemented multiquery settings. Many
demos are implemented and can be interactively accessed for getting insight into
the functionality of the package. A pedagogical model of the well-known thermal
block model is provided as tutorial example [14].

RBniCS:23 This package on Reduced Order Modelling in FEniCS is understood to be ac-
companying the book [17]. Installation prerequisites are the availability of FEniCS
(with PETSc, SLEPc, petsc4py, and slepc4py), numpy, and scipy. The remaining
installation of RBniCS is then easily done by cloning the git repository and re-
questing python3 to install the package. As model classes the package comprises
parametric elliptic and parabolic problems. Both linear and nonlinear problems
(using empirical interpolation) are considered. Advection-diffusion as well as
Stokes and Navier–Stokes problems are readily available. The code uses clear
naming, and is hence sufficiently comprehensive. A documentation can be gen-
erated but is not available online. As basis generation procedures POD, greedy,
and Gram–Schmidt algorithms are realized. The successive constraint method
for rapid computation of stability factor lower bounds is implemented. Almost
20 tutorials are available and suitable to be used in model reduction courses. A
particular feature of this package is the ease of specifying new problems, i. e.,
not only changing coefficient functions but also specifying and changing the
differential operators of the PDE by high-level FEniCS commands.

SparseRC:24 SparseRC [21] is a collection of MATLAB routines which performs parti-
tioning/reordering-based model reduction for RC netlists with nodes up to hun-
dreds of thousands, and terminals up to tens of thousands. The motivating field
of application is analog circuit design, where parasitic extraction of the physi-
cal layout may result in large-scale networks of resistors (R) and capacitors (C).
These networks can bemodeled by dynamical systems and SparseRC can be used
to reduce these systems, exploiting and preserving properties specific to such
networks.

23 https://mathlab.sissa.it/rbnics
24 https://sites.google.com/site/rionutiu2/research/software
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sssMOR:25 The Sparse State-Space and Model Order Reduction Toolbox [6] and the
extension psssMOR26 for parametric problems are MATLAB libraries distributed
under the BSD-2-Clause license. The code is accessible via a git repository at
github. Installation is realized by unzipping the packages and executing a few
installation commands as specified on the webpage. The MATLAB functions are
very well documented, and hence accessible by the MATLAB help functionality.
The particular motivation of those packages is extending the MATLAB-inherent
state-space toolbox, which is restricted to dense matrices and thus only allows
treatment of moderately sized problems. The sss toolbox provides this func-
tionality using sparse matrices, and hence can treat considerably larger system
orders. The sssMOR library then implements MOR techniques using those sparse
system representations. The system types considered are LTI control systems.
Basic reduction techniques implemented are modal truncation, BT, and rational
Krylov subspace methods. At the same time, it provides the IRKA as well as some
more recent algorithms such as the CUmulative REduction framework (CURE),
the Stability-Preserving, Adaptive Rational Krylov algorithm (SPARK), and the
confined IRKA (CIRKA). Some model samples from well-known benchmark col-
lections (CD player, building, gyro) are provided. In principle, the application
scope is not limited as long as the systems can be cast as (parametric) LTI con-
trol systems. The toolboxes are currently being extended to cope with nonlinear
sparse state-space systems, such as bilinear (bsssMOR) and quadratic-bilinear
(qbsssMOR) models. Extensions for other system classes, e. g., port-Hamiltonian
(spHMOR) and second-order (ssoMOR) systems, are naturally also conceivable
under the same guiding principle.

We do not claim completeness of this above package list, as many researchers have
their private code collection, libraries, or repositories. But the list covers themain cur-
rently available software packages that we are aware of. Several smaller packages ex-
ist, such as pydmd27 on DMD and ezyrb28 on POD with interpolation. Some academic
PDE discretization packages also include MOR functionality, e. g., libmesh,29 which
has RB capabilities via rbOOmit [23], or Feel++,30 which also provides MOR methods.
Further packages existwhichhowever areno longerunder activedevelopment andnot
provided by download. Among those wewant tomention dune-rb, whose capabilities
and principles of coupling with RBmatlab have been explained in [9]. The thesis [1]
describes the extension to localized model reduction approaches. Also the package

25 https://www.rt.mw.tum.de/?sssmor
26 https://www.rt.mw.tum.de/?psssmor
27 https://mathlab.sissa.it/pydmd
28 http://mathlab.sissa.it/ezyrb
29 http://libmesh.github.io/
30 http://www.feelpp.org
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rbMIT is a software package that provides the most elementary RB algorithms. This
software package was awarded with the Springer Computational Science and Engi-
neering Prize in 2009. The package is currently not available by a website, but can be
accessed via the internet archive.31 Similarly the package PABTEC on BT for electronics
applications is listed at the swMATHportal32 but seems no longer to be publicly acces-
sible. The academic MORE package33 [32] is a precursor of the commercial MOR toolbox
mentioned in the previous subsection.

Disadvantages of academic packages (which more or less applies to the different
packagesmentioned above) must certainly also be stated. The level of documentation
of those code packages may be incomplete, development of packages may be discon-
tinued, and support can typically not be offered in an extensive manner or instanta-
neously. So using these packages typically requires some self-study, reproducing of
running models and reduction techniques, or even some reverse engineering, or trial
and error with changing parameters.

13.4 Conclusions and recommendations

We argued that online-efficient and accurate MOR algorithms require access to data,
functionality, or other internals of the full solver. In particular, in many cases, a spe-
cial design, decomposition or structure of the full-ordermodel needs to be established
in order to optimally apply correspondingMOR techniques. Elementary routines from
the full solver or high-fidelity simulation package that are required for white-boxMOR
may comprise the following: For snapshot-based MOR algorithms, e. g., POD, greedy,
and POD-greedy, a triggering of a full-order simulation with specified input parame-
ters and return of state snapshots must be available. Information about nodal inter-
pretation of the state vector is required. In the simplest case of linear finite element or
finite difference discretization this is equivalent to enumeration of the mesh nodes. In
general, a routine for assembly or matrix–vector multiplication with the inner prod-
uct (mass) matrix is very helpful. This enables computing L2-norms, orthonormaliza-
tion, and projections. Similarly, a subroutine for assembly or matrix–vector multipli-
cation with the stiffness matrix, which enables computing SobolevH1-semi-norms, is
helpful. Export of other system matrices, e. g., Jacobian matrices of nonlinear terms,
may be required. For parametric problems an export of parameter separable decom-
positions is essential; this means access to (nonparametric) systemmatrix and vector
components and parametric coefficient functions. For sampling-based methods for

31 https://web.archive.org/web/20171110212818/http://augustine.mit.edu:80/methodology/
methodology_rbMIT_System.htm
32 https://swmath.org/software/4061
33 https://w3.onera.fr/more
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nonlinear problems, local evaluation of system nonlinearities based on local recon-
struction of the state vector needs to be provided. Optionally, visualization or post-
processing of a given state vector by the full solver is useful. If those functionalities
are not provided by the full solver, either a loss of online efficiency is unavoidable,
or some gray-box or black-box workarounds or hacks might be possible as we have
exemplified for general stationary and unsteady, linear, and nonlinear problems.

A multitude of software packages from groups from academia have been devel-
oped. Typically those packages not only provide the latest MOR technology, but also
implementations of some full system solvers. Only by control of all implementational
details of the full models, which are typically code-intrusive, optimal online efficiency
can be realized. This is mostly not possible by full-order models from commercial
packages. This full control of the high-fidelity models enables independence of sci-
entists from external simulator packages, but at the same time is very time-intensive,
distracting one from main disciplinary research.

We want to close with some recommendations. Addressing commercial software
developers, we think that simulation packages will not remain competitive if MOR
technology is not included as essential enabler for modern higher-level simulation
tasks such as uncertainty quantification, parametric studies, optimization, design,
etc. Simulation software engineers should be aware that their solver is no longer the
last element in the simulation analysis pipeline but those are embedded inmore com-
plex simulation tasks. Inclusion of MOR algorithms in simulator packages can thus
be a competitive advantage. When planning to include MOR technology, one should
be clearly aware that access to more internals than just the solution/state degree of
freedom vector is required. Access to system matrices, components, local nonlinear-
ity evaluations, local subgrid geometry, etc., can be useful or required for modern and
efficient MOR algorithms as listed above. Creating suitable interfaces or other means
of access to those internals will enable applying efficient MOR algorithms. Apart from
exporting system parameters, matrices, or geometry information, also importing fa-
cilities for effective bases, error estimation routines, etc., would be recommended for
expanding the scope of applicability of commercial simulation packages. In particu-
lar, by realizing error estimation techniques, a certification and therefore guarantee of
reliability of methods/packages is obtained. The last decade has enabled hundreds of
PhD students to specialize and graduate in the field of MOR. These would be excellent
candidates for transfer of those technologies into business and industry. A further op-
tion for realizing MOR algorithms is the foundation of public–private partnerships or
joint programs, e. g., European Industrial Training Networks, etc.

Some recommendations for academic MOR researchers might be to develop fur-
ther “hacks” of industrial software, i. e., using solvers as black-box or gray-box leading
to new algorithms and analysis. For reproducibility of results, we strongly encourage
to provide open-source and online accessible program code. If possible, it is advisable
to contribute to existing MOR libraries instead of reinventing the wheel by developing
new packages from scratch. If it is required or desired to reinvent MOR code or solvers,
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practitioners or simulation engineers should think of useful central interfaces, which
will ease exchange and coupling of the code to other packages. This is particularly rel-
evant for bridging different programming platforms such as C++, MATLAB, Python,
Fortran, etc.

A general wish for the development in computational sciences is the increased
acknowledgment of and respect for the effort in development, maintenance, and
documentation of software packages. Typically, applications and computational ap-
proaches are so involved, that software packages cannot be set up from scratch by
scientists within the typical scientific “lifetime,” e. g., a PhD thesis. In particular,
existing open-source packages directly enable a high entrance level for further de-
velopments. Software development thus is crucial and one core scientific service for
the community. Scientists and students who develop, maintain, and provide well-
designed software should more easily obtain scientific credits by accepting such
results as major scientific results in theses as well as being able to publish journal
articles on such software – in contrast to the current state of expecting such develop-
ments asminor by-product of disciplinary scientific contributions. But also in funding
agencies such major achievements or proposals on scientific software development
should be accepted as foundation for disciplinary progress. Only slowly this aware-
ness in the scientific communities is developing, e. g., reflected by the recent Software
branch at the SIAM journal on Scientific Computing that now also enables to pub-
lish journal articles on software. But certainly this general awareness can be further
strengthened by each individual researcher.
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