Contents

Preface xv

Chapter 1. Introduction 1

Chapter 2. Stability Theory for Nonnegative Dynamical Systems 7
 2.1 Introduction 7
 2.2 Lyapunov Stability Theory for Nonnegative Dynamical Systems 7
 2.3 Invariant Set Stability Theorems 16
 2.4 Semistability of Nonnegative Dynamical Systems 21
 2.5 Stability Theory for Linear Nonnegative Dynamical Systems 30
 2.6 Nonlinear Compartmental Dynamical Systems 43
 2.7 Compartmental Systems in Biology, Ecology, Epidemiology, and Pharmacology 49
 2.8 Discrete-Time Lyapunov Stability Theory for Nonnegative Dynamical Systems 61
 2.9 Discrete-Time Invariant Set Theorems and Semistability Theorems 64
 2.10 Stability Theory for Discrete-Time Linear Nonnegative Dynamical Systems 69
 2.11 Discrete-Time Nonlinear Compartmental Dynamical Systems 83

Chapter 3. Stability Theory for Nonnegative and Compartmental Dynamical Systems with Time Delay 89
 3.1 Introduction 89
 3.2 Lyapunov Stability Theory for Time-Delay Nonnegative Dynamical Systems 90
 3.3 Invariant Set Stability Theorems 93
 3.4 Stability Theory for Continuous-Time Nonnegative Dynamical Systems with Time Delay 97
 3.5 Discrete-Time Lyapunov Stability Theory for Time-Delay Nonnegative Dynamical Systems 103
3.6 Stability Theory for Discrete-Time Nonnegative Dynamical Systems with Time Delay 106

Chapter 4. Nonoscillation and Monotonicity of Solutions of Nonnegative Dynamical Systems 111
4.1 Introduction 111
4.2 Nonoscillation and Monotonicity of Linear Nonnegative Dynamical Systems 112
4.3 Mammillary Systems 119
4.4 Monotonicity of Nonlinear Nonnegative Dynamical Systems 123
4.5 Monotonicity of Discrete-Time Linear Nonnegative Dynamical Systems 127
4.6 Monotonicity of Discrete-Time Nonlinear Nonnegative Dynamical Systems 132
4.7 Monotonicity of Nonnegative Dynamical Systems with Time Delay 135

Chapter 5. Dissipativity Theory for Nonnegative Dynamical Systems 143
5.1 Introduction 143
5.2 Dissipativity Theory for Nonnegative Dynamical Systems 145
5.3 Feedback Interconnections of Nonnegative Dynamical Systems 153
5.4 Dissipativity Theory for Nonlinear Nonnegative Dynamical Systems 158
5.5 Feedback Interconnections of Nonnegative Nonlinear Dynamical Systems 164
5.6 Dissipativity Theory for Discrete-Time Nonnegative Dynamical Systems 166
5.7 Specialization to Discrete-Time Linear Nonnegative Dynamical Systems 173
5.8 Feedback Interconnections of Discrete-Time Nonnegative Dynamical Systems 177
5.9 Dissipativity Theory for Nonnegative Dynamical Systems with Time Delay 183
5.10 Feedback Interconnections of Nonnegative Dynamical Systems with Time Delay 188
5.11 Dissipativity Theory for Discrete-Time Nonnegative Dynamical Systems with Time Delay 191
5.12 Feedback Interconnections of Discrete-Time Nonnegative Dynamical Systems with Time Delay 194

Chapter 6. Hybrid Nonnegative and Compartmental Dynamical Systems 197
CONTENTS

10.3 Semistability and Equipartition of Linear Compartmental Systems with Time Delay 324
10.4 Semistability and Equipartition of Nonlinear Compartmental Systems with Time Delay 328

Chapter 11. Robustness of Nonnegative Dynamical Systems 343

11.1 Introduction 343
11.2 Nominal System Model 343
11.3 Semistability and Homogeneous Dynamical Systems 347
11.4 Uncertain System Model 348

Chapter 12. Modeling and Control for Clinical Pharmacology 359

12.1 Introduction 359
12.2 Pharmacokinetic Models 360
12.3 State Space Models 361
12.4 Drug Action, Effect, and Interaction 362
12.5 Pharmacokinetic Parameter Estimation 363
12.6 Pharmacodynamic Models 365
12.7 Open-Loop Drug Dosing 366
12.8 Closed-Loop Drug Dosing 368
12.9 Closed-Loop Control of Cardiovascular Function 369
12.10 Closed-Loop Control of Anesthesia 371
12.11 Electroencephalograph-Based Control 372
12.12 Bispectral Index-Based Control 373
12.13 Pharmacokinetic and Pharmacodynamic Models for Drug Distribution 374
12.14 Challenges and Opportunities in Pharmacological Control 377

Chapter 13. Optimal Fixed-Structure Control for Nonnegative Systems 379

13.1 Introduction 379
13.2 Optimal Zero Set-Point Regulation for Nonnegative Dynamical Systems 379
13.3 Optimal Nonzero Set-Point Regulation for Nonnegative Dynamical Systems 383
13.4 Suboptimal Control for Nonnegative Dynamical Systems 390
13.5 Optimal Fixed-Structure Control for Nonnegative Dynamical Systems 392
13.6 Nonnegative Control for Nonnegative Dynamical Systems 394
13.7 Optimal Fixed-Structure Control for General Anesthesia 396

Chapter 14. \mathcal{H}_2 Suboptimal Control for Nonnegative Dynamical Systems Using Linear Matrix Inequalities 405

14.1 Introduction 405
CONTENTS

14.2 H_2 Suboptimal Control for Nonnegative Dynamical Systems 405
14.3 Suboptimal Estimation for Nonnegative Dynamical Systems 413
14.4 H_2 Suboptimal Dynamic Controller Design for Nonnegative Dynamical Systems 418

Chapter 15. Adaptive Control for Nonnegative Systems 425
15.1 Introduction 425
15.2 Adaptive Control for Linear Nonnegative Uncertain Dynamical Systems 427
15.3 Adaptive Control for Linear Nonnegative Dynamical Systems with Nonnegative Control 435
15.4 Adaptive Control for General Anesthesia: Linear Model 438
15.5 Adaptive Control for Nonlinear Nonnegative Uncertain Dynamical Systems 444
15.6 Adaptive Control for General Anesthesia: Nonlinear Model 451
15.7 Adaptive Control for Nonlinear Nonnegative Uncertain Dynamical Systems 454
15.8 Adaptive Control for Linear Nonnegative Uncertain Dynamical Systems with Time Delay 463
15.9 Adaptive Control for Linear Nonnegative Dynamical Systems with Nonnegative Control and Time Delay 476
15.10 Adaptive Control for Nonnegative Systems with Time Delay and Actuator Amplitude Constraints 480
15.11 Adaptive Control for General Anesthesia: Linear Model with Time Delay and Actuator Constraints 484

Chapter 16. AdaptiveDisturbance Rejection Control for Compartmental Systems 491
16.1 Introduction 491
16.2 Compartmental Systems with Exogenous Disturbances 492
16.3 Adaptive Control for Linear Compartmental Uncertain Systems with Exogenous Disturbances 493
16.4 Adaptive Control for Linear Compartmental Dynamical Systems with L_2 Disturbances 502
16.5 Adaptive Control for Automated Anesthesia with Hemorrhage and Hemodilution Effects 512

Chapter 17. Limit Cycle Stability Analysis and Control for Respiratory Compartmental Models 523
17.1 Introduction 523
17.2 Ultrametric Matrices, Periodic Orbits, and Poincaré Maps 524
17.3 Compartmental Modeling of Lung Dynamics: Dichotomy Architecture 528
17.4 State Space Multicompartment Lung Model 531
CONTENTS

17.5 Limit Cycle Analysis of the Multicompartment Lung Model 534
17.6 A Regular Dichotomy Model 538
17.7 A General Tree Structure Model 541
17.8 Direct Adaptive Control for Switched Linear Time-Varying Systems 545
17.9 Adaptive Control for a Multicompartment Lung Model 548

Chapter 18. Identification of Stable Nonnegative and Compartmental Systems 553
18.1 Introduction 553
18.2 State Reconstruction 554
18.3 Constrained Optimization for Subspace Identification of Stable Nonnegative Systems 557
18.4 Constrained Optimization for Subspace Identification of Compartmental Systems 566
18.5 Illustrative Numerical Examples 567

Chapter 19. Conclusion 571

Bibliography 573

Index 599