Contents

Preface ix

Notation and Conventions xi

Introduction: An Overview of Some Problems of Unlikely Intersections 1

1 Unlikely Intersections in Multiplicative Groups and the Zilber Conjecture 15
 1.1 Torsion points on subvarieties of G_m .. 16
 1.2 Higher multiplicative rank .. 22
 1.3 Remarks on Theorem 1.3 and its developments 29
 1.3.1 Fields other than \mathbb{Q} .. 29
 1.3.2 Weakened assumptions ... 29
 1.3.3 Unlikely intersections of positive dimension and height bounds 31
 1.3.4 Unlikely intersections of positive dimension and Zilber’s conjecture 33
 1.3.5 Unlikely intersections and reducibility of lacunary polynomials (Schinzel’s conjecture) .. 35
 1.3.6 Zhang’s notion of dependence .. 36
 1.3.7 Abelian varieties (and other algebraic groups) 36
 1.3.8 Uniformity of bounds ... 37
 Notes to Chapter 1 .. 39
 Sparseness of multiplicatively dependent points 39
 Other unlikely intersections ... 39
 A generalization of Theorem 1.3 .. 40
 An application of the methods to zeros of linear recurrences 40
 Comments on the Methods .. 41

2 An Arithmetical Analogue 43
 2.1 Some unlikely intersections in number fields 43
 2.2 Some applications of Theorem 2.1 .. 48
 2.3 An analogue of Theorem 2.1 for function fields 50
 2.4 Some applications of Theorem 2.2 .. 52
 2.5 A proof of Theorem 2.2 ... 54
 Notes to Chapter 2 .. 58
 Simplifying the proof of Theorem 1.3 .. 58
 Rational points on curves over \mathbb{F}_p .. 58
 Unlikely Intersections and Holomorphic GCD in Nevanlinna Theory 60
3 Unlikely Intersections in Elliptic Surfaces and Problems of Masser

3.1 A method for the Manin-Mumford conjecture 62
3.2 Masser’s questions on elliptic pencils ... 66
3.3 A finiteness proof ... 70
3.4 Related problems, conjectures, and developments 77
 3.4.1 Pink’s and related conjectures .. 77
 3.4.2 Extending Theorem 3.3 from \mathbb{Q} to \mathbb{C} 80
 3.4.3 Effectivity ... 83
 3.4.4 Extending Theorem 3.3 to arbitrary pairs of points on families of elliptic curves .. 84
 3.4.5 Simple abelian surfaces and Pell’s equations over function fields 85
 3.4.6 Further extensions and analogues .. 87
 3.4.7 Dynamical analogues .. 89

Notes to Chapter 3 ... 92
 Torsion values for a single point: other arguments 92
 A variation on the Manin-Mumford conjecture 93
 Comments on the Methods .. 94

4 About the André-Oort Conjecture .. 96

4.1 Generalities about the André-Oort Conjecture 96
4.2 Modular curves and complex multiplication 99
4.3 The theorem of André ... 105
 4.3.1 An effective variation .. 111
4.4 Pila’s proof of André’s theorem ... 112
4.5 Shimura varieties .. 118

Notes to Chapter 4 ... 123
 Remarks on Edixhoven’s approach to André’s theorem 123
 Some unlikely intersections beyond André-Oort 124
 Definability and o-minimal structures ... 125

Appendix A Distribution of Rational Points on Subanalytic Surfaces
 by Umberto Zannier .. 128

Appendix B Uniformity in Unlikely Intersections: An Example for Lines in Three Dimensions
 by David Masser ... 136

Appendix C Silverman’s Bounded Height Theorem for Elliptic Curves: A Direct Proof
 by David Masser ... 138

Appendix D Lower Bounds for Degrees of Torsion Points: The Transcendence Approach
 by David Masser ... 140

Appendix E A Transcendence Measure for a Quotient of Periods
 by David Masser ... 143
CONTENTS

Appendix F Counting Rational Points on Analytic Curves:
 A Transcendence Approach 145
 by David Masser

Appendix G Mixed Problems: Another Approach 147
 by David Masser

Bibliography 149

Index 159