Contents

List of Figures and Tables xi
Acknowledgments xv

1. Complexity in Ecological Systems 1
 The Newtonian Paradigm in Physics 2
 Dynamics and Thermodynamics 6
 Emergent Properties 10
 Ecosystems as Complex Adaptive Systems 13

2. Nonlinear Dynamics 17
 The Balance of Nature? 17
 Population Cycles 19
 Catastrophes and Breakpoints 27
 Deterministic Chaos 31
 Evidence of Bifurcations in Nature 34
 Unpredictability and Forecasting 42
 The Ecology of Universality 48
 Evidence of Chaos in Nature 50
 Criticisms of Chaos 58
 Complex Dynamics: The Interplay between Noise and Nonlinearities 61

3. Spatial Self-Organization: From Pattern to Process 65
 Space: The Missing Ingredient 65
 Turing Instabilities 68
 Coupled Map Lattice Models 84
 Looking for Self-Organizing Spatial Patterns in Nature 95
 Dispersal and Complex Dynamics 98
 Spatial Synchrony in Population Cycles 108
 When Is Space Relevant? A Trade-Off between Simplicity and Realism 117
 Coevolution and Diffusion in Phenotype Space 123

4. Scaling and Fractals in Ecology 127
 Scaling and Fractals 127
 Fractal Time Series 137
 Percolation 139
 Nonequilibrium Phase Transitions 144
CONTENTS

The Branching Process 146
The Contact Process: Complexity Made Simple 149
Random Walks and Levy Flights in Population Dynamics 151
Percolation and Scaling in Random Graphs 156
Ecological Multifractals 162
Self-Organized Critical Phenomena 165
Complexity from Simplicity 168

5. Habitat Loss and Extinction Thresholds 171
 Habitat Loss and Fragmentation 171
 Extinction Thresholds in Metapopulation Models 173
 Extinction Thresholds in Metacommunity Models 178
 Food Web Structure and Habitat Loss 186
 Percolation in Spatially Explicit Landscapes 191
 Extinction Thresholds in Spatially Explicit Models 195
 Analytical Models of Correlated Landscapes 199
 More Realistic Models of Extinction Thresholds 206

6. Complex Ecosystems: From Species to Networks 215
 Stability and Complexity 215
 N-Species Lotka-Volterra Models 218
 Topological and Dynamic Constraints 223
 Indirect Effects 226
 Keystone Species and Evolutionary Dynamics 231
 Complexity and Fragility in Food Webs 237
 Community Assembly: The Importance of History 251
 Scaling in Ecosystems: A Stochastic Quasi-Neutral Model 254

7. Complexity in Macroevolution 263
 Extinction and Diversification 263
 Internal and External Factors 264
 Scaling in the Fossil Record 270
 Competition and the Fossil Record 276
 Red Queen Dynamics 279
 Evolution on Fitness Landscapes 282
 Extinctions and Coherent Noise 292
 Network Models of Macroevolution 295
 Ecology as It Would Be: Artificial Life 304
 Recovery after Mass Extinction 308
 Implications for Current Ecologies 313
CONTENTS

Appendix 1. Lyapunov Exponents for ID Maps 317
Appendix 2. Renormalization Group Analysis 319
Appendix 3. Stochastic Multispecies Model 321

References 325
Index 359