Inhaltsverzeichnis

Überblick

1 **Lineare Gleichungssysteme**
 1.1 Auflösung gestaffelter Systeme ... 7
 1.2 Gaußsche Eliminationsmethode .. 8
 1.3 Pivot-Strategien und Nachiteration 12
 1.4 Cholesky-Verfahren für symmetrische, positiv definite Matrizen 19
 Übungsaufgaben ... 22

2 **Fehleranalyse**
 2.1 Fehlerquellen .. 27
 2.2 Kondition eines Problems ... 30
 2.2.1 Normweise Konditionsanalyse ... 32
 2.2.2 Komponentenweise Konditionsanalyse 37
 2.3 Stabilität eines Algorithmus .. 41
 2.3.1 Stabilitätskonzepte .. 42
 2.3.2 Vorwärtsanalyse ... 43
 2.3.3 Rückwärtsanalyse .. 49
 2.4 Anwendung auf lineare Gleichungssysteme 51
 2.4.1 Löbarkeit unter der Lupe .. 51
 2.4.2 Rückwärtsanalyse der Gauß-Elimination 53
 2.4.3 Beurteilung von Näherungslösungen 56
 Übungsaufgaben ... 59

3 **Lineare Ausgleichsprobleme**
 3.1 Gaußsche Methode der kleinsten Fehlerquadrate 66
 3.1.1 Problemstellung ... 66
 3.1.2 Normalgleichungen .. 69
 3.1.3 Kondition 71
 3.1.4 Lösung der Normalgleichungen ... 74
3.2 Orthogonalisierungsverfahren .. 76
 3.2.1 Givens-Rotationen .. 78
 3.2.2 Householder-Reflexionen 80
3.3 Verallgemeinerte Inverse .. 84
 Übungsaufgaben .. 89

4 Nichtlineare Gleichungssysteme und Ausgleichsprobleme 92
 4.1 Fixpunktitration .. 92
 4.2 Newton-Verfahren für nichtlineare Gleichungssysteme 97
 4.3 Gauß-Newton-Verfahren für nichtlineare Ausgleichsprobleme 104
 4.4 Parameterabhängige nichtlineare Gleichungssysteme 111
 4.4.1 Lösungsstruktur .. 111
 4.4.2 Fortsetzungsmethoden 114
 Übungsaufgaben .. 126

5 Lineare Eigenwertprobleme 131
 5.1 Kondition des allgemeinen Eigenwertproblems 132
 5.2 Vektoriteration .. 136
 5.3 QR-Algorithmus für symmetrische Eigenwertprobleme 138
 5.4 Singulärwertzerlegung .. 145
 5.5 Stochastische Eigenwertprobleme 151
 5.5.1 Perron-Frobenius-Theorie 152
 5.5.2 Fastentkoppelte Markov-Ketten 158
 5.5.3 Prinzip der Google-Suchmaschine 163
 Übungsaufgaben .. 165

6 Drei-Term-Rekursionen 171
 6.1 Theoretische Grundlagen 172
 6.1.1 Orthogonalität und Drei-Term-Rekursionen 173
 6.1.2 Homogene und inhomogene Rekursionen 176
 6.2 Numerische Aspekte ... 179
 6.2.1 Kondition .. 180
 6.2.2 Idee des Miller-Algorithmus 187
 6.3 Adjungierte Summation .. 189
 6.3.1 Summation von dominanten Lösungen 190
 6.3.2 Summation von Minimallösungen 193
 Übungsaufgaben .. 197
7 Interpolation und Approximation 200
 7.1 Klassische Polynom-Interpolation 201
 7.1.1 Eindeutigkeit und Kondition 201
 7.1.2 Hermite-Interpolation und dividierte Differenzen 205
 7.1.3 Approximationsfehler 213
 7.1.4 Minimax-Eigenschaft der Tschebyscheff-Polynome 214
 7.2 Trigonometrische Interpolation 218
 7.3 Bézier-Technik 225
 7.3.1 Bernstein-Polynome und Bézier-Darstellung 226
 7.3.2 Algorithmus von de Casteljau 233
 7.4 Splines 240
 7.4.1 Splineräume und B-Splines 241
 7.4.2 Splineinterpolation 248
 7.4.3 Berechnung kubischer Splines 252
 Übungsaufgaben 255

8 Große symmetrische Gleichungssysteme und Eigenwertprobleme 259
 8.1 Klassische Iterationsverfahren 261
 8.2 Tschebyscheff-Beschleunigung 267
 8.3 Verfahren der konjugierten Gradienten 272
 8.4 Vorkonditionierung 279
 8.5 Lanczos-Methoden 285
 Übungsaufgaben 290

9 Bestimmte Integrale 294
 9.1 Quadraturformeln 295
 9.2 Newton-Cotes-Formeln 298
 9.3 Gauß-Chrißoffel-Quadratur 304
 9.3.1 Konstruktion der Quadraturformeln 305
 9.3.2 Berechnung der Knoten und Gewichte 310
 9.4 Klassische Romberg-Quadratur 313
 9.4.1 Asymptotische Entwicklung der Trapezsumme 313
 9.4.2 Idee der Extrapolation 315
 9.4.3 Details des Algorithmus 321
 9.5 Adaptive Romberg-Quadratur 324
 9.5.1 Adaptives Prinzip 325
 9.5.2 Schätzung des Approximationsfehlers 327
 9.5.3 Herleitung des Algorithmus 330
 9.6 Schwierige Integranden 336
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Thema</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7</td>
<td>Adaptive Mehrgitter-Quadratur</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>9.7.1 Lokale Fehlerschätzung und Verfeinerungsregeln</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>9.7.2 Globale Fehlerschätzung und Details des Algorithmus</td>
<td>344</td>
</tr>
<tr>
<td>9.8</td>
<td>Monte-Carlo-Quadratur für hochdimensionale Integrale</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>9.8.1 Verwerfungsmethode</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>9.8.2 Markov-Ketten-Monte-Carlo-Methoden</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>9.8.3 Konvergenzgeschwindigkeit</td>
<td>354</td>
</tr>
<tr>
<td>Übungsaufgaben</td>
<td></td>
<td>356</td>
</tr>
</tbody>
</table>

Software 361

Literatur 363

Index 369