Content

List of contributing authors —— V
Introduction —— 1

Keith Moffat, Feng Zhang, Klaus Hahn, Andreas Möglich

1 The biophysics and engineering of signaling photoreceptors —— 7
1.1 Photoreceptors —— 7
1.1.1 Novel photoreceptors —— 10
1.1.2 Biophysics of photoreceptors and signal transduction —— 10
1.2 Engineering of photoreceptors —— 12
1.2.1 Approaches to designing light-regulated biological processes —— 13
1.3 Case study — transcriptional control in cells by light —— 17
1.4 Conclusion —— 18
Acknowledgements —— 20
References —— 20

Kelly A. Zalocusky, Lief E. Fenno, Karl Deisseroth

2 Current challenges in optogenetics —— 23
2.1 Introduction —— 23
2.2 Background: current functionality of tools —— 23
2.3 Unsolved problems and open questions: technology from cell biology, optics, and behavior —— 25
2.4 Unsolved problems and open questions: genomics and biophysics —— 28
2.5 Conclusion —— 31
References —— 33

Ehud Y. Isacoff, Richard H. Kramer, Dirk Trauner

3 Challenges and opportunities for optochemical genetics —— 35
3.1 Introduction —— 35
3.2 Photosensitizing receptors —— 36
3.3 PCL and PTL development and applications —— 39
3.4 Advantages and disadvantages of PCLs and PTLs —— 41
3.5 Conclusion —— 42
References —— 42

Thomas Knöpfel

4 Optogenetic imaging of neural circuit dynamics using voltage-sensitive fluorescent proteins: potential, challenges and perspectives —— 47
4.1 Introduction —— 47
4.2 The biological problem —— 47
4.3 The large scale challenge of circuit neurosciences — 47
4.4 The current approach to the large-scale integration problem — 48
4.5 Large-scale recordings of neuronal activities using optogenetic approaches — 49
4.6 Genetically encoded voltage indicators: state of development and application — 49
4.7 Unsolved methodological / technical challenges — 52
References — 52

Gero Miesenböck
5 Why optogenetic “control” is not (yet) control — 55
Acknowledgments — 59
References — 59

Mario de Bono, William R. Schafer, Alexander Gottschalk
6 Optogenetic actuation, inhibition, modulation and readout for neuronal networks generating behavior in the nematode Caenorhabditis elegans — 61
6.1 Introduction – the nematode as a genetic model in systems neuroscience — 61
6.2 Imaging of neural activity in the nematode — 62
6.2.1 Genetically encoded Ca²⁺ indicators (GECIs) — 62
6.2.2 Imaging populations of neurons in immobilized animals — 62
6.2.3 Imaging neural activity in freely moving animals — 63
6.2.4 Other genetically encoded indicators of neuronal function — 64
6.3 Optogenetic tools established in the nematode — 64
6.3.1 Channelrhodopsin (ChR2) and ChR variants with different functional properties for photodepolarization — 64
6.3.2 Halorhodopsin and light-triggered proton pumps for photohyperpolarization — 65
6.3.3 Photoactivated Adenylyl Cyclase (PAC) for phototriggered cAMP-dependent effects that facilitate neuronal transmission — 65
6.3.4 Other optogenetic approaches — 66
6.3.5 Stimulation of single neurons by optogenetics in freely behaving C. elegans — 66
6.4 Examples for optogenetic applications in C. elegans — 68
6.4.1 Optical control of synaptic transmission at the neuromuscular junction and between neurons — 68
6.4.2 Optical control of neural network activity in the generation of behavior — 69
6.5 Future challenges — 70
6.5.1 Closed-loop optogenetic control and optical feedback from behavior and individual neurons—70
6.5.2 Requirements for integrated optogenetics in the nematode—72
References—74

Matt L. Labella, Stephan Sigrist, Erik M. Jørgensen
7 Putting genetics into optogenetics: knocking out proteins with light—79
7.1 Introduction—79
7.2 Protein degradation—79
7.3 Light stimulation—85
References—88

André Fiala
8 Optogenetic approaches in behavioral neuroscience—91
8.1 Introduction—91
8.2 Approaches to dissect neuronal circuits: determining physiological correlations, requirement and sufficiency of neurons—92
8.3 Optogenetic analysis of simple stimulus-response-connections—93
8.4 Optogenetic and thermogenetic analysis of modulatory neurons: artificial mimicry of relevance—95
8.5 Conclusion—97
References—97

Fumi Kubo, Herwig Baier
9 Combining genetic targeting and optical stimulation for circuit dissection in the zebrafish nervous system—101
9.1 Introduction—101
9.2 Zebrafish neuroscience: Genetics + Optics + Behavior—101
9.3 Genetic targeting of optogenetic proteins to specific neurons—102
9.4 Optical stimulation in behaving zebrafish—103
9.5 Annotating behavioral functions of genetically-identified neurons by optogenetics—103
9.5.1 Spinal cord neurons (Rohon–Beard and Kolmer–Agduhr cells)—103
9.5.2 Hindbrain motor command neurons—104
9.5.3 Tangential neurons in the vestibular system—104
9.5.4 Size filtering neurons in the tectum—105
9.5.5 Whole-brain calcium imaging of motor adaptation at single-cell resolution—105
9.6 Future directions—106
References—106
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.8</td>
<td>Seizures</td>
<td>151</td>
</tr>
<tr>
<td>13.9</td>
<td>Conclusion</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>152</td>
</tr>
</tbody>
</table>

V. Sturm

14 Potential of optogenetics in deep brain stimulation — 157

14.1 DBS history and indications — 157
14.2 Electrical DBS: advantages and drawbacks — 157
14.3 Potential of optogenetic stimulation — 158
14.4 Conclusion — 159

References — 159

Zhuo-Hua Pan, Botond Roska, José-Alain Sahel

15 Optogenetic approaches for vision restoration — 161

15.1 Introduction — 161
15.2 Proof-of-concept studies — 162
15.3 Light sensors — 164
15.4 rAAV-mediated retinal gene delivery — 166
15.5 Retinal cell-type specific targeting — 167
15.6 Summary — 169

References — 169

Further reading — 171

Eberhart Zrenner, Birgit Lorenz

16 Restoration of vision — the various approaches — 173

16.1 Introduction — 173
16.2 The various conditions to be treated — 173
16.3 State of the various restorative approaches — 174
16.3.1 Neuroprotection — 174
16.3.1.1 Encapsulated cell technology (ECT) — 174
16.3.1.2 Electrostimulation — 175
16.3.1.3 Visual Cycle modulators — 175
16.3.1.4 Gene replacement therapy — 176
16.3.1.5 Stem cell approaches — 176
16.3.1.6 Optogenetic approaches — 177
16.3.1.7 Electronic retinal prosthesis — 177
16.3.2 Cortical prosthesis — 181
16.3.3 Tongue stimulators — 181
16.4 The current situation — 182
16.5 Open Questions — 182
16.6 Conclusion — 183
References — 183
Selected registered clinical trials as by February 2013 — 185

Tobias Moser
17 Optogenetic approaches to cochlear prosthetics for hearing restoration — 187
17.1 Background and state of the art — 187
17.2 Current research on cochlear optogenetics — 189
17.2.1 Current and future work on cochlear optogenetics aims at — 190
17.3 Potential and risks of cochlear optogenetics for auditory prosthetics — 190
References — 191

Sabine Schleiermacher
18 History in the making: the ethics of optogenetics — 193
References — 199

Henrik Walter, Sabine Müller
19 Optogenetics as a new therapeutic tool in medicine? A view from the principles of biomedical ethics — 201
19.1 Principles of optogenetics — 201
19.2 Principles of biomedical ethics — 202
19.2.1 Respect for the patient’s autonomy — 205
19.2.2 Nonmaleficence — 206
19.2.3 Beneficence — 207
19.2.4 Justice — 208
19.3 Conclusion — 209
References — 210


Index — 223