List of Figures

Fig. 1: Giovanni Aldini’s experiments with the forerunner of transcranial direct current stimulation for the treatment of “melancholia”. —— 3

Fig. 1.1: Top and lateral views of the skull illustrating Broca-Championnière method of central sulcus or Rolandic fissure localization. B: bregma (black dot), EOA: external orbital apophysis, IE: inferior end (inferior Rolandic point), RL: Rolandic line (solid black line), SP: superior point (superior Rolandic point), SS: sagittal suture, Z: Zygomatic arch line (white dashed line). Here, “l’extrémité inférieure” or the inferior Rolandic point is localized by determining a 7-cm line which starts at the external orbital apophysis of the frontal bone, parallel to the zygomatic arch, and “le point supérieur” or the superior Rolandic point (SRP) is located on average 4.7 cm behind the bregma. The central sulcus is located on the line connecting the two points. —— 9

Fig. 1.2: Top and lateral views of the skull illustrating Reid’s method of central sulcus or Rolandic fissure localization. EAP: external angular process of the frontal bone (black dot), LF: longitudinal fissure, MPL: mastoid process line, PE: parietal eminence (black square), PEL: pre-external auditory meatus line, RBL: Reid’s base line, RF: Rolandic fissure (solid black line), SF: Sylvian fissure. The base line, known as Reid’s base line, is defined as that which “runs through the lowest part of the infraorbital margin and the middle of the external auditory meatus”. The Sylvian fissure is localized by drawing a line “from a point one inch and a quarter behind the external angular process of the frontal bone to a point three-quarters of an inch below the most prominent part of the parietal eminence”. The Rolandic fissure is localized by drawing a pair of perpendicular lines to Reid’s base line. The first line is drawn “from the depression in front of the external and auditory meatus” and the second line is drawn “from the posterior border of the mastoid process at its root”. This creates a “four-sided fig.”, bounded above and below by the lines for the longitudinal fissure and horizontal limb of the fissure of Sylvius respectively, and in front and behind by the two perpendicular lines. The diagonal line of this four-sided fig. represents the fissure of Rolando. —— 10

Fig. 1.3: Top and lateral views of the skull illustrating Poirier’s method of central sulcus or Rolandic fissure localization. IRP: inferior Rolandic point (black star), ML: midline, RL: Rolandic line (solid black line), SRP: superior Rolandic point (black open square), 50%: halfway point between nasion and inion. The superior Rolandic point is 2 cm behind the midpoint between the nasion and inion on the midline. The inferior Rolandic point is 7 cm above the zygomatic arch immediately anterior to the tragus, perpendicular to the zygomatic arch. The LS lies on the nasion-lambda line which starts at the temporal canthus to a point 1 cm anterior to the lambda on the midline. —— 11

Fig. 1.4: Top and lateral views of the skull illustrating Taylor-Haughton method of central sulcus or Rolandic fissure localization. Central sulcus (RL) is the line connecting the SRP and IRP. IRP: inferior Rolandic point (black star), NI: Nasion-inion line, OTA: orbito-temporal angle (solid black square), PAL: pre-auricular line, PAP: pre-auricular point (solid black dot), RL: Rolandic line (black line), SL: Sylvian line, SRP: superior Rolandic point (open black square), Z: zygomatic arch (upper margin) line, 50%: halfway point on the naso-inion line (open black dot), 75%: three-quarters point on the nasion-inion line. “In the adult take a point (superior Rolandic) three-quarters of an inch behind the centre of the naso-inion line. This will usually be found to correspond to 53 to 55 per cent of the naso-inion distance, measuring from before backwards. The lower Rolandic point is found by erecting a perpendicular to the upper margin of the zygoma, starting from the pre-auricular point to meet the Sylvian line. Should, however, the upper margin of the zygoma be difficult to determine, the perpendicular (pre-auricular line) may be erected on a line connecting the center of the infra-orbital margin with the center of the
external auditory meatus or auricular point. The Rolandiic line may now be drawn by connecting these two points.

Fig. 1.5: Top and lateral views of the skull illustrating the method of CS and LS localization as described by Dr. Albert L. Rhoton, Jr. CS: central sulcus (solid black line), FZL/SF: frontozygomatic line / Sylvian fissure, IRP: inferior Rolandic point (black star), NI: Nasion-inion line, SRP: superior Rolandic point (open black square), 50%: halfway point on the nasio-inion line, 75%: three-quarters point on the nasio-inion line. The LS is located on the frontozygomatic line which connects the frontozygomatic suture to the 75% point of the nasio-inion line. The SRP is located 2 cm behind the 50% point of the naso-inion line. Another line is drawn from the midportion of the zygomatic arch to the SRP where IRP is the point of intersection with the LS or frontozygomatic line.

Fig. 1.6: Top view of the skull illustrating the position of the central sulcus based on the measurements of Figure 8 in Kido et al (1980). The lines and measurements are superimposed onto the skull to estimate the location of the central sulcus.

Fig. 1.7: Schematic representation of the criteria used for morphologic classification and corresponding MR image of a typical example. The position of the third fissure, which segments the knob, modifying its appearance from an omega to an epsilon in the lateral, central, or medial part of the hand knob indicates a medially asymmetric epsilon, epsilon, and laterally asymmetric epsilon, respectively. To distinguish an omega from a null, the height of the knob must be greater than the thickness of the precentral gyrus measured at the base of the knob. If the height is smaller than the thickness, the HMC is classified as null. Multiplanar reformatted MR imaging axial sections were obtained from left hemispheres 50 ± 2 mm above the Talairach ACPC plane. The red area in the MR images highlights the morphologic variant (from Caulo et al 2007).

Fig. 1.8: Top view of the skull illustrating the position of the precentral knob of the primary motor cortex with respect to skull landmarks, based on the measurements from CT of the brain (Park et al 2007). PCK: precentral knob.

Fig. 1.9: Stereotactic planning in different views (3D) for targeting fMRI activation areas (images courtesy of Prof. B. Pirotte)

Fig. 2.1: Anatomy of the central region. The superficial layer of the brain has been removed (about 5 mm thick). The central sulcus (CS), lateral fissure (LF), superior frontal sulcus (SFS) and inferior frontal sulcus (IFS) and the superior precentral sulcus (SPCS) and inferior precentral sulcus (IPCS) are easily identified. Zones corresponding to representation of the face (F), upper limbs (UL) and lower limbs (LL) are delineated by the midline (ML), the lateral fissure (LF) and the level of the superior frontal sulcus (SFS) and inferior frontal sulcus (IFS).

Fig. 2.2: Anatomy of the central region. The “peeling” function of Nexstim software can be used to virtually remove the superficial layer from all of the brain. The same structures as those observed on Figure 1 can be easily identified.

Fig. 2.3: Superficial oblique sections of the central region. a) Representation of a superficial oblique section through the central region (dotted line). The Probe Eye View (PEV) function of the neuronavigation software provides an equivalent view to this type of section. b) CT, c) MRI: The same structures as those observed in Figures 1 and 2 can be easily recognized. In the zone corresponding to the representation of the upper limb (UL), situated posteriorly to the posterior part of the superior frontal sulcus (SFS), the central sulcus often has an Omega shape. It is activated on functional MRI (Fig. c) when the patient performs movements of the contralateral hand.

Fig. 2.4: Functional MRI. Activation of zones corresponding to the representation of the lower limbs (LL) was obtained by asking the patient to think that he was moving his lower limbs (paraplegic patient). In this case, the Medtronic workstation integrated functional MRI images in the neuronavigation planning. ML: Midline, CS: central sulcus, SFS: superior frontal sulcus.
Fig. 2.5: Identification of the effective stimulation target by neuronavigated rTMS. The effective stimulation target on rTMS corresponds to the motor cortex (situated just anteriorly to the central sulcus (CS)) situated over the posterior part of the superior frontal sulcus (SFS). Stimulation of this target at about 70% of maximum power of the machine induced a motor evoked response (MEP) confirming that this target corresponded to the motor cortex corresponding to representation of the upper limb. SFS: superior frontal sulcus, IFS: inferior frontal sulcus, Target: target detected by neuronavigation corresponding to the zone of effective stimulation. IFS: inferior frontal sulcus, LF: lateral fissure, ML: midline. —— 25

Fig. 2.6: Lead placement. We use two Resume 4-electrode leads, with electrodes numbered from 0 to 3 for the midline lead and 4 to 7 for the lateral lead (Figs b and c). We generally place electrode 2 on the target (target Fig. b) of the midline lead that is placed just posteriorly to the central sulcus (Fig. a), in the posterior part of the superior frontal sulcus (SFS). The optimal stimulation combination in this configuration should be 1-2+ and 5-6+. Electrode 0 is not shown on Figure c, as it placed underneath the bone edge. —— 25

Fig. 3.1: Use of the SSEP reversal potential method to determine location of M1 extradurally. Contacts 0-3 of a typical 4-contact paddle-type electrode are shown in one example placement across the underlying central sulcus. The upper left waveforms show the SSEP in each contact. The reversal of phase occurs, in this example, between contacts 1 and 2. The inset picture at lower left is the intraoperative photo of this technique being used, revealing the relative size of the lead and the craniotomy opening. By moving the lead around in different locations, the path of the sulcus can be mapped out on the dura. —— 29

Fig. 3.2: Use of the cortical mapping technique for determining location of M1 regions. The EMG from muscles in the upper extremity are shown below following stimulation with a ball tip electrode in three locations on the dura. The far left shows activation of the extensor muscle in the forearm, the other two show activation of the APB muscle in the hand. This technique corroborates the SSEP method in figure 1 and helps determine more precisely the underlying thresholds for individual muscle groups. —— 31

Fig. 4.1: Intraoperative photo demonstrating the one burr hole approach on the right hemisphere for left-sided BPA. Note that the patient is awake, the left hand and face can be seen and sterile neuronavigation markers are attached on the left side of the head clamp. —— 36

Fig. 4.2: Lateral x-ray of a patient’s head with two implanted epidural leads via the one burr hole approach. The patient suffered from facial pain following surgery of a cranial base meningioma. —— 38

Fig. 4.3: Operative view of the two burr-hole technique. After drilling the holes (a), the electrode array is slipped underneath the bony bridge (b) which will keep the paddle in place; also, the dural-cerebral interface will be squeezed by the thickness of the strip, reducing the CSF thickness underneath. A bony cradle is fashioned for the cable joint (c) (courtesy of Sergio Canavero). —— 39

Fig. 5.1: Neuronavigation (Brainlab®). The first step consists of localizing the central sulcus (CS) on an axial scan (b). The first target consists of the zone of representation of the upper limb situated posteriorly to the posterior part of the superior frontal sulcus (SFS). The Probe Eye View (PEV fig. c and d) then allows easy identification of the various structures of the central region: CS: central sulcus, SFS: superior frontal sulcus, IFS: inferior frontal sulcus, ML: midline. The various functional zones of the motor cortex can be delineated in the axis of the trajectory (PEV). F: face, UL: upper limb, LL: lower limb. —— 42

Fig. 5.2: Neuronavigation (Surgiscope®). The previously determined target (Fig. 1) is represented by a laser beam (black arrow Fig. a). After performing the skin incision (Fig. b) and craniotomy (Fig. c), it is important to check that the craniotomy remains centered around the target (black arrow). —— 43
Fig. 5.3: Intraoperative electrophysiological testing. This study can be performed by using a grid (comprising 16 electrodes in this case) (Fig. a) placed on the dura mater or Resume leads, which will then be used for chronic stimulation (Fig. b). In this case, the electrode positions must be changed to test all of the exposed dural surface. ——— 44

Fig. 5.4: Somatosensory evoked potentials. The signal evoked by stimulation of the median nerve in the wrist is recorded (after about 20 milliseconds) on all electrodes of the grid. The negative P20 potentials are recorded on electrodes placed anteriorly to the central sulcus (dotted line on the right-hand Fig.) and the positive N20 potentials are recorded on electrodes situated posteriorly to the central sulcus, which confirms the position of the central sulcus. ——— 44

Fig. 5.5: Motor evoked potentials. Stimulation of electrodes placed anteriorly to the central sulcus induces motor responses, which confirm the position of the motor cortex. Motor responses can be observed clinically (Fig. s a and b) in response to repeated stimulation (Fig. c). In this case, stimulation at 16 Hertz (STIM) induces motor responses whose amplitude increases progressively with stimulation (R). A high stimulation intensity facilitates clinically visible motor responses (Fig. b), but is associated with a risk of seizures. We currently prefer to use single-impulse stimulation, which is not associated with any risk of seizures, but which usually does not induce a clinically visible response. The response must then be recorded (R Fig. e) and the depth of general anaesthesia must be lightened. Management of the depth of general anaesthesia is facilitated by the use of BIS monitoring. The EEG signal recording electrode is placed on the patient’s forehead (B Fig. s d). Figure d also indicates the limits of the craniotomy (c). ——— 45

Fig. 5.6: Lead positions. We use two Resume 4-electrode leads placed in parallel and perpendicular to the axis of the central sulcus (CS). The optimal stimulation parameters consist of placing the cathodes (negative poles) anteriorly to the central sulcus (CS) and the anodes posteriorly to the central sulcus (Fig. a). Leads are sutured to the dura mater at 2 levels (Fig. b). A first suture comprises the two leads to limit lateral movements (*). The zone of connection of the lead with the extension is anchored by a second suture in order to limit anteroposterior movements (**). ——— 46

Fig. 5.7: Value of neuronavigated rTMS. Figures a and b show the position of the stimulation target shown to be effective on rTMS. It is situated just anteriorly to the central sulcus (CS Fig. a). Figure b: the same target is represented on the cortical surface. The postcentral sulcus (PostCS) and the intraparietal sulcus (Intra PS) can be easily identified. Figures c and d show the position of the target on neuronavigation. On Figure c, the arrow indicates the level of the section shown on Figure d. This Figure illustrates practically the same structures as those visible on Figure b. The target is placed slightly posteriorly to the central sulcus, just anteriorly to the intraparietal sulcus (Intra PS). Parallax errors can be minimized by carefully comparing neuronavigated rTMS data and intraoperative neuronavigation data ——— 48

Fig. 5.8: Subdural lead placement. The quadripolar lead is inserted within the central sulcus after dissection of the arachnoid (From Saitoh and Hosomi 2009) ——— 49

Fig. 7.1: Schema showing examples of craniotomy locations in order to map, for example, arm and flank (more superiorly) versus face (inferior). Pre-planning these adjustments will result in a smaller but adequate craniotomy opening, adequately allowing for manipulation of the electrode during mapping procedures and securing the electrode once final positioning is determined. ——— 58

Fig. 7.2: Schema showing basic landmarks for reliably determining the general orientation of the central sulcus. One measures from the nasion to inion, finds the midpoint (vertical line at the top of the head in Figure so that a=b), and then follows a line extending from approximately two centimeters posterior from this midpoint (ie point c) to just posterior to the lateral canthus (point d). Making use of this information, with or without adjuvant functional imaging or
physiology, is helpful and may be the only available means of planning the craniotomy if adjuvant procedures fail, which, of course, can happen.

Fig. 7.3: Three representative MCS post-operative lateral skull films that show the size and location of the craniotomy, the lead orientation, the course of the wire as it makes its way to the bur hole and then the exiting of the wire from the bur hole toward the subclavicular region and IPG.

Fig. 11.1: Intraoperative EMG showing activation of hand muscles after stimulation with epidural paddle electrode.

Fig. 11.2: 3-dimensional postoperative reconstruction showing the placement of the chronic leads over the motor cortex.

Fig. 11.3: Top: 3-dimensional reconstruction of the post-operative Computerized Tomography showing the contacts of the paddle electrode which allowed stimulation of contralateral hand muscle; above, an axial functional MRI image showing aberrant activation of hand motor cortex in the affected contralateral hand; Bottom: the affected hand of the patient before (left) and 4 months after MCS (right).

Fig. 12.1: Chronic subcortical infarct in the right internal capsule. This 51-year-old man with a chronic subcortical infarct 8 months before and moderately spastic arm and clumsy hand underwent ICS of the premotor and primary motor cortex. Diffusion imaging of MRI demonstrates the lesion in the right internal capsular area (A). fMRI images on a wrist flexion-extension task of the paretic arm failed to show activation of MI in both hemispheres. Six months' stimulation with rehabilitative training improved the mobility and spasticity of his hands, thus enabling him to drive a car again. In addition, his Functional Independence Measure (FIM) score improved in self-care, mobility, and locomotion. This patient had left hemiparesis with spastic upper extremity. A paddle electrode was implanted to cover premotor and hand/arm MI (B). After 6 months' stimulation and rehabilitative training, the patient can drive a car with improved FIM scores.

Fig. 12.2: Chronic cortical infarct in the left middle cerebral artery territory. T1-wighted image shows the cortical infarct in the left middle cerebral artery territory (A). This 39-year old patient with a cortical infarct 18 months earlier presented severe dysphagia and hemiparesis. Two 4x4 cm paddle electrodes were implanted to cover Broca's area plus premotor and MI cortices (B). After 6 months of stimulation (1 to 5Vover 1 month, 200 μs, 50 Hz) and rehabilitation (two hours every day), the patient regained communication ability and improved motor function of the right limbs.

Fig. 12.3: Massive cortical infarct in the right hemisphere. T1-weighted image shows a diffuse frontoparietal cortical infarct (A). This 67 year old patient could only stand with maximal assistance, otherwise he was bed-ridden, despite long-term intensive rehabilitation. fMRI on flexion-extension of the knee showed diffuse activation in posterior parietal areas. Two paddle electrodes were implanted to cover the frontal (near supplementary motor cortex) and posterior parietal area (network stimulation) in order to achieve maximal coverage (B). After stimulation and rehabilitative training for 6 months, he began to stand independently and walk 200 m.

Fig. 12.4: Massive corticosubcortical infarct in a young adult (A). fMR scans showing a widespread hotspot on moving the paretic shoulder (rest of the arm plagic) (B,C). Bihemispheric stimulation covering frontal motor areas (D,E)

Fig. 13.1: case 1 (female). Neuronavigation images showing the parietal (a) and frontal (b) targets. Lateral skull x-rays showing the position of the two stimulating strips (c).

Fig. 13.2: case 2 (male). Neuronavigation images showing the parietal (a) and frontal (b) targets. Lateral skull x-rays showing the position of the two stimulating strips (c).
Fig. 13.3: Default Mode Network changes in the 2 patients. Female: increases (A) and decreases (B). —— 167
Fig. 13.3: Default Mode Network changes in the 2 patients. Male: increases (C) and decreases (D). —— 168
Fig. Box 13.1: PCI values in severely brain-injured patients. PCI progressively increases from VS/UWS to MCS and to recovery of functional communication (EMCS). PCI attains levels of healthy awake subjects in LIS patients (Coma Science Study Group, Liege, Belgium) —— 172
Fig. 14.1: Electrode design (A. Northstar Neuroscience Renova ® B. Medtronic Resume ®) —— 177
Fig. 14.2: Targeting the frontal pole and midlateral prefrontal cortex (BA 10 and 46) —— 178
Fig. 14.3: Targeting the DLPFC (BA9/46) —— 180
Fig. 14.4: Diffusion Tensor Imaging (DTI) —— 181
Fig. 15.1: ladder approach to auditory cortex implantation —— 188
Fig. 15.2: different clinical aspects of tinnitus (e.g. loudness, distress, location, mood) are represented by different oscillatory networks which communicate at different frequencies and mutually interact in specific brain structures (hubs). AC: auditory cortex, OFC: orbitofrontal cortex, PHC: parahippocampal area, sgACC: subgenual anterior cingulate cortex —— 189
Fig. 15.3: plastic changes in tinnitus related to deafferentation. Depending on the bandwidth of the deafferentation different plastic changes might occur, starting with changes in lateral inhibition, followed by widening of the receptive fields, and sprouting. These changes occur in the auditory cortex. If deafferentation occurs in a large bandwidth, compensatory changes in the auditory cortex might not be sufficient to fill in the deafferentation gap, and parahippocampal mechanisms might be required. Thus in tinnitus associated with no or little hearing loss the auditory cortex might be the ideal neuromodulation target, in tinnitus with hearing loss the parahippocampus might be the ideal target for neuromodulation. —— 189
Fig. 15.4: response rate to auditory cortex stimulation: burst stimulation can rescue 50% of stimulation failures and can further improve 50% of responders to tonic stimulation. —— 193
Fig. 15.5: frontal (left) and hippocampal cortical (right) stimulation for tinnitus suppression, based on tinnitus sound evoked BOLD activation. —— 195
Fig. 16.1: a Rectangular craniectomy with implanted ferrule. Arrow points to the burr hole which will accommodate the fixation tab used to secure the IPG in the ferrule b. Ferrule secured in position with self tapping screws in the four tangs at the corners of the ferrule. Note the fixation tab (arrow) which is accommodated by the burr hole. Note single depth electrode (short arrow) inserted in connector port. —— 207
Fig. 16.2: Example of RNS with 2 4-contact subdural strip electrodes implanted over the left superior and middle temporal gyri. The three arrows (left to right) point to the connector port, microchip, and battery of the IPG. —— 207
Fig. 17.1: a schematic view of the components of a closed-loop neurostimulation system. —— 212
Fig. 19.1: Examples of concentric spherical model. Upper row fig.s demonstrate the electrode position in tDCS and the expected electrical field generated. Lower row fig.s show the position of the magnet in TMS and the expected electrical field. (Modified from Deng et al., 2011, with permission) —— 236
Fig. 19.2: Construction of a 3D realistic head model, including segmentation, mesh generation, establishment of head model, and tissue property assignment. —— 239
Fig. 19.3: Motor cortex compartment model. Note that the pyramidal neurons and basket cells are oriented vertically and horizontally to cortical surface, respectively. —— 240
Fig. 19.4: Cortico–basal circuit model showing the connection between cortex and basal ganglia. Excitatory connections are indicated with a solid line and inhibitory connections with a dashed line. GPe: globus pallidus externa, Gpi: globus pallidus interna, STN: Subthalamic nucleus, —— 241
Fig. 19.5: Factors affecting the extent and direction of the EF/CD generated by cortical stimulation 243

Fig. 19.6: Examples of EF/CD generated by conventional tDCS, high-definition tDCS, and ECS. Note difference in the size and numbers of electrode used in the cortical stimulation. Also note that focalities and strengths of EF/CD are different depending on the methods of cortical stimulation tools. (Modified from Miranda et al., 2013, and Edwards et al., 2013, with permission) 244

Fig. 19.7: Extent and strengths of EF/CD induced in the cortical surface by different electrode configurations and shapes in transcranial stimulation. Total electrode current was adjusted to produce a 0.328 mV/mm peak electrical field, 1 mm below the cortical surface. (Modified from Datta et al., 2008, with permission) 244

Fig. 19.8: Influence of the location of a neural stimulator chest implant on intracerebral EF/CD. Note that the location did not affect the EF/CD measurements within the brain. 245

Fig. 19.9: Influence of stimulation amplitude on the EF/CD. The simulation was performed in ECS using a paddle electrode containing five disc electrodes. Note that EF/CD is increasing with increased amplitude. 246

Fig. 19.10: Different EF/CD maps obtained by varying electrode configurations in ECS. An active electrode was placed in the premotor cortex and reference electrodes in the superior parietal, inferior parietal, and superior temporal areas. 247

Fig. 19.11: Activation patterns of pyramidal neurons and basket cells using different polarities of stimulation. Note that basket cells are most selectively activated during cathodal stimulation, while pyramidal neurons are most influenced by anodal stimulation. Bipolar stimulation affects both types of cells, but selective activation for each cell type is lower. (Modified from Zwartjes et al., 2012, with permission) 248