Contents

Author Information — XI
Preface — XII
Acknowledgement — XIV

Yoshifumi Takahashi, Zihai Shi

1 Introduction — 1
1.1 Recent Development in Sewer Renovation in Japan — 1
1.2 Past Sewer Projects and Emerging Challenges — 7
1.2.1 Modern sewerage projects — 8
1.2.2 Emerging challenges related to urban sewerage — 9
1.2.2.1 Functional degradation — 9
1.2.2.2 Structural degradation — 11
1.2.3 Necessity of reconstruction projects — 13
1.3 Sewer Renovation in Reconstruction Projects — 14
1.3.1 Background: Why rehabilitation? — 14
1.3.2 Classification of renovation methods and their track records — 15
1.3.3 Tokyo’s approach to reconstruction — 17
References — 20

Yoshifumi Takahashi

2 The Composite Pipe Construction Method — 21
2.1 What Is a Composite Pipe? — 21
2.2 Classification of Pipe-Reforming Methods — 23
2.3 Superiority of Composite Pipes — 29
2.4 The SPR Method — 30
2.5 Renovation Construction of Composite Pipes: From Investigation to Construction — 37
2.5.1 Investigations necessary for composite pipe design — 37
2.5.1.1 Medium- to large-diameter pipe — 37
2.5.1.2 Small-diameter pipe — 51
2.5.2 Design flow — 55
2.5.3 Construction flow of the SPR method — 57
References — 63
Yukari Nakamura

3 Fracture Tests of Full-Scale Pipe Specimens and Various Structural Element and Material Property Tests — 65

3.1 Fracture Tests on Load-Carrying Capacity — 66
3.1.1 External pressure test — 67
3.1.2 Preload test — 78
3.1.3 Verification test on earthquake resistance — 81

3.2 Structural Element Tests — 88
3.2.1 Characteristics of SPR liner materials — 88
3.2.2 Contents and purposes of structural element tests — 91
3.2.3 Autogenous shrinkage test — 92
3.2.4 Direct tension test — 95
3.2.5 Compressive shear test (adhesion test) — 96
3.2.6 Double shear test — 99
3.2.7 Profile pullout test — 103
3.2.8 Verification test on the effectiveness of additional rebar in SPR liner — 107
3.2.9 Review and certification — 110

3.3 Basic Material Property Tests — 111
3.3.1 Test methods — 111
3.3.2 Results of basic material property tests — 115

References — 117

Zihai Shi

4 Nonlinear Fracture Mechanics of Concrete — 118

Part I Fundamental Concepts of Linear Elastic Fracture Mechanics — 118
4.1 Stress Intensity Factor and K-Controlled Crack-Tip Fields of LEFM — 118
4.2 Energy Principles — 124
4.2.1 The Griffith fracture theory — 124
4.2.2 The energy release rate G — 125
4.2.3 Relationship between K and G — 126
4.2.4 The criterion for crack propagation — 129

Part II Fundamental Concepts of Nonlinear Fracture Mechanics of Concrete — 131
4.3 Fracture Process Zone and Tension-Softening Phenomenon — 131
4.4 Fracture Energy G_f and Tension-Softening Law — 133
4.4.1 Fracture energy G_f — 134
4.4.2 Tension-softening law — 137
Part III Two Numerical Modelling Theories for Crack Analysis of Concrete — 141

4.5 The Discrete Crack Modelling Approach — 141
4.5.1 Fictitious crack model by Hillerborg and colleagues — 141
4.5.2 Numerical formulation of a single-crack problem — 143
4.5.3 Numerical formulation of a multiple-crack problem — 147

4.6 The Smeared Crack Modelling Approach — 152
4.6.1 Crack band model — 152
4.6.2 Non-orthogonal crack model — 155
4.6.3 Localised smeared crack model using the secant modulus of elasticity for strain softening — 161

References — 163

Zihai Shi, Jianhong Wang

5 Structural Analysis Theories of Composite Pipes as Semi-Composite Structure in Sewer Renovation — 165

5.1 Review of Code Requirements — 165
5.1.1 Outline of Guidelines for sewer renovation by the composite pipe method — 165
5.1.2 Basic code requirements for composite structural members — 168

5.2 No-Tension Interface Modelling and Fracture-Mechanics Based Numerical Analysis Theories — 171
5.2.1 No-tension interface modelling and the semi-composite pipe structure — 171
5.2.2 Material modelling — 176

5.3 Numerical Studies of Fracture Behaviours in Renovated Sewer Pipes and Manholes — 178
5.3.1 Numerical analyses of load-carrying capacity tests on real-size pipe specimens using the smeared crack modelling approach — 178
5.3.2 Numerical analyses of load-carrying capacity tests on real-size manhole specimens using the discrete crack modelling approach — 192

5.4 Buckling Theory of Invert Lining under Groundwater Pressure — 202
5.4.1 Buckling of invert lining under groundwater pressure — 202
5.4.2 Derivation of buckling equation for invert lining — 203
5.4.3 Verification study — 207
5.4.4 Buckling design — 211

References — 212

Masaaki Nakano

6 Renovation Design of Ageing Sewers as Composite Pipes by the Limit State Design Method — 213

6.1 Application of the Limit State Design Method — 213
6.2 Basic Concept of Performance Verification —— 214
6.3 Performance Requirements for Renovated Sewer —— 215
6.3.1 Under normal loading —— 215
6.3.2 Under earthquake loading —— 217
6.4 Performance Verification under Normal Loading —— 218
6.4.1 Verification for serviceability limit state —— 218
6.4.2 Verification for ultimate limit state —— 218
6.4.3 Safety factors —— 219
6.4.4 Loads to be considered —— 220
6.4.5 Structural analysis model —— 221
6.4.6 Nonlinear structural analysis —— 221
6.4.7 Performance evaluation in terms of load coefficients —— 224
6.5 Performance Verification under Earthquake Loading —— 227
6.5.1 Seismic performance requirements —— 227
6.5.2 Verification for serviceability limit state —— 229
6.5.3 Verification for ultimate limit state —— 229
6.5.4 Safety factors —— 229
6.5.5 Analysis method used for verification —— 231
6.5.6 Earthquake resistance verification based on nonlinear dynamic analysis —— 231
6.5.7 Earthquake resistance verification based on response displacement method —— 238
References —— 244

Yukari Nakamura

7 Development of the Composite Pipe Design Support System —— 245
7.1 Design Support Programme —— 245
7.2 Overview of the System —— 245
7.3 Programme Structure —— 245
7.4 Input/Output Functions and Scope of Application —— 246
7.5 Automatic Meshing Function —— 251
7.6 Basic Rules in Building FE Models —— 251
7.6.1 Element types —— 251
7.6.2 Basic rules for meshing —— 252
7.7 Normal Loading Analysis —— 256
7.7.1 Entering analysis conditions —— 257
7.7.2 Creating an analysis model —— 269
7.7.3 Running a task —— 270
7.7.4 Outputting analysis results —— 272
7.7.5 On-screen warning messages —— 273
7.8 Other Functions —— 273
References —— 273
8 Design Examples of Sewers Renovated by the SPR Method — 274

8.1 Example I: Rectangular Sewer — 274
8.1.1 Internal investigation of sewer — 274
8.1.2 Original design documents and determination of cross sections for structural analysis — 276
8.1.3 General conditions for structural analysis — 277
8.1.4 Numerical results under normal load conditions — 282
8.1.5 Verification of safety under normal load conditions — 286
8.1.6 Results of seismic performance analysis — 287
8.1.7 Verification of safety under earthquake loading — 296
8.1.8 Safety verification of local buckling of the bottom slab — 296
8.1.9 Determination of renovation methods — 298

8.2 Example II: Horseshoe-shaped Sewer — 299
8.2.1 Internal investigation of sewer — 299
8.2.2 Original design documents and determination of cross sections for structural analysis — 301
8.2.3 General conditions for structural analysis — 302
8.2.4 Numerical results under normal load conditions — 307
8.2.5 Verification of safety under normal load conditions — 310
8.2.6 Results of seismic performance analysis — 310
8.2.7 Verification of safety under earthquake loading — 317
8.2.8 Safety verification of local buckling of the bottom slab — 319
8.2.9 Determination of renovation methods — 320

8.3 Example III: Circular Sewer (Concrete Foundation) — 322
8.3.1 Internal investigation of sewer — 322
8.3.2 Original design documents and determination of cross sections for structural analysis — 323
8.3.3 General conditions for structural analysis — 323
8.3.4 Numerical results under normal load conditions — 329
8.3.5 Verification of safety under normal load conditions — 333
8.3.6 Results of seismic performance analysis — 333
8.3.7 Verification of safety under earthquake loading — 339
8.3.8 Safety verification of local buckling at the bottom of the pipe — 340
8.3.9 Determination of renovation methods — 340

8.4 Example IV: Circular Sewer (Sand-filled Foundation) — 341
8.4.1 Internal investigation of sewer — 341
8.4.2 Original design documents and determination of cross sections for structural analysis — 342
8.4.3 General conditions for structural analysis — 343
8.4.4 Numerical results under normal load conditions — 348
8.4.5 Verification of safety under normal load conditions — 351
8.4.6 Results of seismic performance analysis — 352
8.4.7 Verification of safety under earthquake loading — 357
8.4.8 Safety verification of local buckling at the bottom of the pipe — 358
8.4.9 Determination of renovation methods — 358

References — 359

List of Figures — 360
List of Photos — 368
List of Tables — 370
Index — 373