AN EXTENSION OF PENROSE’S INEQUALITY ON GENERALIZED INVERSES TO THE SCHATTEN p-CLASSES

BY

SALAH MECHERI

Abstract. Let $B(H)$ be the algebra of all bounded linear operators on a complex separable infinite dimensional Hilbert space H.

In this paper we minimize the Schatten C_p-norm of suitable affine mappings from $B(H)$ to C_p, using convex and differential analysis (Gâteaux derivative) as well as input from operator theory. The mappings considered generalize Penrose’s inequality which asserts that if A^+ and B^+ denote the Moore-Penrose inverses of the matrices A and B, respectively, then

$$\|AXB-C\|_2 \geq \|AA^+CB^+B-C\|_2,$$

with A^+CB^+ being the unique minimizer of minimal $\|\cdot\|_2$ norm. The main results obtained characterize the best C_p-approximant of the operator AXB.

Mathematics Subject Classification 2010: 47B47, 47B10, 47A05.

Key words: Schatten p-classes, Gâteaux derivative, generalized inverses, Moore-Penrose inverses.

1. Introduction

Let $B(H)$ denote the algebra of all bounded linear operators on a complex separable and infinite dimensional Hilbert space H and let $T \in B(H)$ be compact, and let $s_1(T) \geq s_2(T) \geq \ldots \geq 0$ denote the singular values of T, i.e., the eigenvalues of $|T| = (T^*T)^{\frac{1}{2}}$ arranged in their decreasing order. The operator T is said to belong to the Schatten p-classes C_p if

$$\|T\|_p = \left[\sum_{i=1}^{\infty} s_i(T)^p\right]^\frac{1}{p} < \infty, \quad 1 \leq p < \infty.$$
Hence \(C_1 \) is the trace class, \(C_2 \) is the Hilbert-Schmidt class, and \(C_\infty \) corresponds to the class of compact operators with

\[
\|T\|_\infty = s_1(T) = \sup_{\|f\|=1} \|Tf\|
\]

denoting the usual operator norm. For the general theory of the Schatten \(p \)-classes the reader is referred to [8]. In this paper we minimize the Schatten \(C_p \)-norm of suitable affine mappings from \(B(H) \) to \(C_p \), using convex and differential analysis (Gâteaux derivative) as well as input from operator theory. This techniques are already used by the author to minimize \(C_1 \)-norm, for the best \(C_1 \) approximant and for the best \(L_1(X,\mu) \) approximant see ([3],[4], [5]). The mappings considered generalize Penrose’s inequality [6, Corollary 1] which asserts that if \(A^+ \) and \(B^+ \) denote the Moore-Penrose inverses of the matrices \(A \) and \(B \), respectively, then

\[
\|AXB - C\|_2 \geq \|AA^+CB^+B - C\|_2,
\]

with \(A^+CB^+ \) being the unique minimizer of minimal \(\|\cdot\|_2 \) norm. The main results obtained characterize the best \(C_p \)-approximant of the operator \(AXB \).

2. Main results

We begin by some definitions and properties of generalized inverses which will be used for the sequel.

Definition 2.1 ([9], pp. 251). An operator \(A^- \) is said to be a generalized inverse of the operator \(A \in B(H) \) if \(AA^-A = A \). An operator \(A \in B(H) \) has a generalized inverse if its range, \(\text{ran} A \), is closed.

Proposition 2.1 ([6], Theorem 1). For an operator \(A \in B(H) \) with closed range its Moore-Penrose inverse, denoted \(A^+ \), satisfies

\((i) \) \(AA^+A = A \),
\((ii) \) \(A^+AA^+ = A^+ \),
\((iii) \) \((AA^+)^* = AA^+ \),
\((iv) \) \((A^+A)^* = A^+A \),

and, further, \(A^+ \) is uniquely determined by these properties.
If an operator \(A^- \) satisfies properties (i) and (ii) of Proposition 2.1 (so that \(AA^- A = A \) and \((AA^-)^* = AA^- \) it will be called a (i), (iii) inverse of \(A \); if \(B^- \) satisfies (i) and (iv) of Proposition 2.1 it will be called a (i), (iv) inverse of \(B \).

Let \(\phi : B(H) \to B(H) \) be a linear map and let \(C \in C_p(1 < p < \infty) \).

Let \(\psi : U \to C_p \) defined by

\[
\psi(X) = \phi(X) - c.
\]

Define the function \(F : U \to \mathbb{R}^+ \) by

\[
F(X) = \|\psi(X)\|_{C_p}.
\]

Now we are ready to prove our first result in \(C_p \)-classes \((1 < p < \infty)\). It gives a necessary and sufficient optimality condition for minimizing \(F \).

Let \(B \) be a Banach space, \(\phi \) a linear map \(B \to B \), and \(\psi(x) = \phi(x) - c \) for some element \(c \in B \). Use the notation

\[
D_x(y) = \lim_{t \to 0^+} \frac{1}{t} (\|x + ty\| - \|x\|).
\]

Elementary that \(D_x \) is sub-additive and \(D_x(y) \leq \|y\| \), also \(D_x(x) = \|x\| \) and \(D_x(-x) = -\|x\| \). For more details the reader is referred to [1]. The following theorem is a well known result in convex analysis.

Theorem 2.1. The map \(F_\psi = \|\psi(x)\| \) has a global minimum at \(x \in B \) if and only if

\[
(2.1) \quad D_{\psi(x)}(\phi(y)) \geq 0, \quad \forall y \in B.
\]

It is well known that this holds for all \(a \in B = C_p(H) \), since \([8] C_p(1 < p < \infty) \) is always uniformly convex. This fails when either \(p = 1 \) or \(p = \infty \).

Theorem 2.2 ([8]). Let \(X, Y \in C_p \). Then, there holds

\[
D_X(Y) = pRe\{tr(|X|^{p-1}U^*)Y\},
\]

where \(X = U|X| \) is the polar decomposition of \(X \).

Now we are ready to characterize the global minimum of \(F_\psi \) on \(C_p(1 < p < \infty) \), when \(\phi \) is a linear map satisfying the following useful condition:

\[
(2.2) \quad tr(X\phi(Y)) = tr(\phi^*(X)Y), \quad \forall X, Y \in C_p,
\]
where ϕ^* is an appropriate conjugate of the linear map ϕ. We state some example of ϕ and ϕ^* satisfying the above condition (2.2).

The elementary operator $E_{A,B} : I \mapsto I$ defined by

$$E_{A,B}(X) = \sum_{i=1}^{n} A_i X B_i,$$

where $A_i, B_i \in B(H)$, $(1 \leq i \leq n)$ and I is a separable ideal of compact operators in $B(H)$ associated with some unitary invariant norm. It is easy to show that the conjugate operators $E^*_{A,B} : I^* \mapsto I^*$ of $E_{A,B}$ has the form

$$E^*_{A,B}(X) = \sum_{i=1}^{n} B_i X A_i,$$

and that the operators $E_{A,B}$ and $E^*_{A,B}$ satisfy the condition (2.2). Now we are in position to prove the following theorem.

Theorem 2.3. Let $V \in C_p$, and let $\psi(V)$ have the polar decomposition $\psi(V) = U|\psi(V)|$. Then F_ψ has a global minimum on C_p at V if and only if $|\psi(V)|^{p-1}U^* \in \ker \phi^*$.

Proof. Assume that F_ψ has a global minimum on C_p. Then

(2.3) \[D_{\psi(V)}(\phi(Y)) \geq 0, \]

for all $Y \in C_p$. That is,

$$p\text{Re}\{\text{tr}(|\psi(V)|^{p-1}U^*\phi(Y))\} \geq 0, \forall Y \in C_p.$$

This implies that

(2.4) \[\text{Re}\{\text{tr}(|\psi(V)|^{p-1}U^*\phi(Y))\} \geq 0, \forall Y \in C_p. \]

Let $f \otimes g$ be the rank one operator defined by $x \mapsto \langle x, f \rangle g$, where f, g are arbitrary vectors in the Hilbert space H. Take $Y = f \otimes g$, since the map ϕ satisfies (2.2) one has

$$\text{tr}(|\psi(V)|^{p-1}U^*\phi(Y)) = \text{tr}(\phi^*(|\psi(V)|^{p-1}U^*)Y).$$

Then (2.4) is equivalent to

(2.5) \[\text{Re}\{\text{tr}(\phi^*(|\psi(V)|^{p-1}U^*)Y)\} \geq 0, \]
for all \(Y \in C_p \), or equivalently
\[
\langle \phi^* (|\psi(V)|^{p-1}) g, f \rangle \geq 0, \forall f, g \in H.
\]
Since \(f, g \) are arbitrary we get
\[
\phi^* (|\psi(V)|^{p-1}U^*) = 0,
\]
or
\[
|\psi(V)|^{p-1}U^* = 0.
\]
Conversely, if \(\phi(|\psi(V)|^{p-1}U^*) = 0 \), it is easy seen (using the same arguments above) that
\[
\text{Re} \{ \text{tr} (|\psi(V)|^{p-1}U^*) \phi(Y) \} \geq 0, \forall Y \in C_p.
\]
By this we get (2.3). \(\square \)

By using Theorem 2.3 with \(\phi(X) = AXB \) we obtain the following corollary.

Corollary 2.1. Let \(S = U|S| \in C_p \) be the polar decomposition of \(S \) and let \(X \in B(H) \) be such that \(AXB - C \in C_p \). Then the following assertions are equivalent:

1. \(\|AXB - C\|_{C_p} \geq \|ASB - C\|_{C_p} \), \(\forall X \in C_p \).
2. \(B|ASB - C|^{p-1}U^*A = 0 \).

Note that Corollary 2.1 remains hold for more general classes of operators than the operator \(AXB \) like the elementary operator \(E_{A,B} \).

Now by using Corollary 2.1 and the following lemmas we obtain as a consequence an extension of Penrose’s inequality to the von Neumann-Schatten classes \(C_p \).

Lemma 2.1 ([2], Assertion). Let \(A, B \in B(H) \) have closed range and let \(X \in B(H) \) be such that \(AXB - C \in C_p \). Then for \(p \geq 2 \), \(B|AXB - C|^{p-1}U^*A = 0 \) if and only if \(B|AXB - C|U^*A = 0 \).

Note that *Maher* [2] proved the previous lemma for \(p \geq 2 \) and showed that it is not valid for \(p < 2 \).

Lemma 2.2 ([7], Theorem 2). Let \(A, B \in B(H) \) having closed range and \(A \) have a (i), (iii) inverse \(A^- \) and \(B \) have (i), (iv) inverse \(B^- \). Then the operator equation \(AXB = C \) has a solution if and only if \(AA^-CB^-B = C \) in which case the general solution is
\[
X = X_1 + L - A^-ALBB^-,
\]
where \(X_1 \) is a particular solution of \(AXB = C \) and \(L \) is arbitrary in \(B(H) \).
Theorem 2.4. Let \(A, B \in B(H) \) having closed range and \(A \) have a (i), (iii) inverse \(A^- \) and \(B \) have (i), (iv) inverse \(B^- \) and let \(X \in B(H) \) be such that \(AXB - C \in C_p \). Then for \(p \geq 2 \)

\[
\|AXB - C\|_{C_p} \geq \|ASB - C\|_{C_p},
\]

if and only if, \(S \) satisfies \(ASB = AA^-CB^-B \).

Proof. It follows from Lemma 2.1 that \(B|ASB - C|^{p-1}U^*A = 0 \) if and only if \(B|ASB - C|U^*A = 0 \). Hence \(B(ASB - C)^*A = 0 \), that is, \(A^*(ASB - C)B^* = 0 \). Therefore

\[
(2.7) \quad A^*ASBB^* = A^*CB^*.
\]

Multiply (2.7) on the left and on the right by \((B^-)^* \). Since \(A^- \) is a (i), (iii) inverse of \(A \) and \(B^- \) is a (i), (iv) inverse of \(B \), \((A^-)^*A^* = (AA^-)^* = AA^- \) and \(B^*(B^-)^* = (B^-B)^* = B^-B \). Then \((A^-)^*A^*A = A \) and \(BB^*(B^-)^* = B \). Hence it follows from (2.6) that \(S \) satisfies

\[
(2.8) \quad ASB = AA^-CB^-B.
\]

Conversely, let \(S \) satisfies \(ASB = AA^-CB^-B \). It results from (2.6) that (2.8) has the following solution

\[
(2.9) \quad S = A^-CB^- + L - A^-ALBB^- \quad \text{for arbitrary } L \in B(H).
\]

Then \(S \) satisfies (2.8). Since \(A^- \) and \(B^- \) are (i), (iii) and (i), (iv) inverses, respectively,

\[
A^*ASBB^* = A^*(AA^-)^*C(B^-B)^*B^* = A^*CB^*.
\]

Therefore \(A^*(ASB - C)B^* = 0 \) and \(B(ASB - C)^*A = B|ASB - C|U^*A = 0 \). It follows from Lemma 2.1 that \(B|ASB - C|^{p-1}U^*A = 0 \). By applying Corollary 2.1 we get \(\|AXB - C\|_{C_p} \geq \|AA^-CB^-B - C\| \). \(\square \)

Let \(M \) be a subspace of \(B \). Recall that if to each \(A \in B \) there exists a \(B \in M \) for which

\[
\|A - B\| \leq \|A - C\|
\]

for all \(C \in M \). Such \(B \) (if they exist) are called best approximants to \(A \) from \(M \). Then the previous theorem can be reformulated as follows:
Theorem 2.5. Let $A, B \in B(H)$ having closed range and A have a (i), (iii) inverse A^{-} and B have (i), (iv) inverse B^{-} and let $X \in B(H)$ be such that $AXB - C \in C_p$. Then for $p \geq 2$, the operator ASB is the best unique approximant of the operator AXB if and only if S satisfies $ASB = AA^{-}CB^{-}B$.

In the following theorem we show that Maher’s result [2, Theorem 4.1] is a consequence of Theorem 2.3 and its Corollary 2.1

Theorem 2.6. Let $A, B \in B(H)$ having closed range and A have a (i), (iii) inverse A^{-} and B have (i), (iv) inverse B^{-} and let $X \in B(H)$ be such that $AXB - C \in C_p$. Then for $p \geq 2$

$$\|AXB - C\|_{C_p} \geq \|AA^{-}CB^{-}B - C\|.$$

Proof. Since the map $\|AXB - C\|_{C_p}$ has a global minimizer by Theorem 2.4 at $X = S = A^{-}CB^{-} + L - A^{-}ALBB^{-}$, thus $ASB = AA^{-}CB^{-}B$. Hence $\|AXB - C\|_{C_p} \geq \|AA^{-}CB^{-}B - C\|$.

Again Theorem 2.5 can be reformulated as follows:

Theorem 2.7. Let $A, B \in B(H)$ having closed range and A have a (i), (iii) inverse A^{-} and B have (i), (iv) inverse B^{-} and let $X \in B(H)$ be such that $AXB - C \in C_p$. Then, for $p \geq 2$, $AA^{-}CB^{-}B$ is the best C_p approximant of the operator AXB.

Acknowledgements. The author would like to thank the referee for his careful reading of the paper. His valuable suggestions, and pertinent comments resulted in numerous improvements throughout.

REFERENCES

Received: 21.V.2010 Taibah University, College of Science, Department of Mathematics, Al-Madinah Al-Monawarah, SAUDI ARABIA mecherisalah@hotmail.com

Revised: 12.X.2010
Accepted: 19.X.2010