Obesity has become one of the major threats for public health in industrialised world among adults, but also among adolescents and children. It is influenced by the interaction of genes, nutrition, environment, and lifestyle. Environmental and lifestyle risk factors include foetal and lifelong environment, nutrient quality, chemical and microbial exposure, and psychical stress, all of which are important contributing influences. Removing or limiting chemical and pharmaceutical obesogens from human environment could make a difference in the growing epidemic of obesity.

Additionally, nutrigenomics describes how modifications in individual diets can improve health and prevent chronic diseases, as well as obesity, by understanding the effects of a genetic profile in the interaction between food and increase in body weight. Furthermore, individual genetic variations in genome represent an individual's predisposition for obesity. Therefore, the use of individual genetic information, avoiding obesogens, and a healthy lifestyle could help to improve the management of obesity and maintain a healthy weight.

KEY WORDS: genes, nutrigenomics, nutrition, obesogens

The growing prevalence of obesity and the fact that its management is mostly ineffective are opening novel fields of research - investigation of genes, environment, and their interactions with the intention to create a concept of personalised medicine and nutrition (1).

Obesity and its implications for human health decrease the quality of life and life expectancy considerably, as they increase the risk of a great number of chronic diseases (2-10; table 1). Excess weight and obesity are the consequences of a higher energy intake and lower energy expenditure, which results in a positive energy balance (11). Several biological changes in our body are related with the state of overweight and obesity (Figure 1).

Obesity is a disease which affects not only the individual, but also the public health. It is influenced by many factors such as genetic and epigenetic predisposition, metabolic, hormonal, environmental, behavioural, social, and cultural aspects (12). This is why it is important to better understand obesity and its aetiology and find more effective prevention and treatment tools.

Genetic aspect of obesity

Individual human differences and genetic variations influence the risk of becoming obese (11). At present, over 100 genes are under discussion for their effect on obese phenotypes. The latest update of the Human Obesity Gene Map, which was created in 2005, focuses on 253 groups of genes related to obesity (13). This catalogue of obesity genes shows that putative loci affecting obesity-related phenotypes are situated on all chromosomes except Y. Table 2 displays five categories of the most investigated obesity-related genes in recent years (13-16, Figure 1).
The studies on both humans and animals showed that different genes play roles in different responses to weight gain or weight loss, and that body defence against losing fat/weight is greater than that against gaining fat/weight (17). Also, the weight loss response to (dietary) interventions varies. Many genes involved in the regulation of energy balance, appetite, lipid metabolism, and adipogenesis have been reported to affect the risk of dietary intervention failure in some individuals. Some of these genes have already been mentioned: β-adrenergic receptor (ADBR), uncoupling proteins (UCPs), leptin (LEP), leptin receptor (LEPR), pro-opiomelanocortin (POMC), and interleukin 6 (IL-6) (18, Table 2).

In studies involving adult monozygotic twins (19, 20) who were overfed and whose energy intake or exercise were restricted (21-23), it was shown that the predisposition to increase or decrease body fat was genetically based (1).

Mammes et al. (2001) reported that a G>A transition at position -2549 in the promoter region of the LEP gene is associated with obesity and that carriers of the -2549A allele have higher leptin levels and lower weight loss as a response to low calorie intake (24, 25). Furthermore, carriers of a variant C allele in the LEPR gene [Ser (T) 343Ser (C)] have lost more weight in response to a low calorie intake than the noncarriers (26).

In a study of the Lys656Asn variant within LEPR, homozygotes for the Lys656 allele had a considerable loss of body weight, fat mass, waist circumference, and a decrease in body mass index (BMI), systolic blood pressure, and leptin levels, compared to the carriers of the Asn656 allele (27). Some studies have investigated the effect of a polymorphism in the peroxisome proliferator-activated receptor γ (PPARγ) gene, Pro12Ala. Lindi et al. (28) showed that Ala12 carriers increased body weight considerably in a period of 10 years. However, Ala12Ala homozygotes had, in the same period of time, lower levels of fasting plasma insulin, regardless of the increased body weight. In another study, Ala12 carriers on a hypocaloric diet lost almost the same body weight as Pro12 homozygotes during a period of six months, but unlike Pro12 homozygotes, they gained more weight after the hypocaloric treatment was completed (29).

Candidate gene variants for polygenic obesity appear to disrupt pathways involved in the regulation of energy intake and expenditure and include adrenergic receptors, uncoupling proteins, PPARγ, POMC, melanocortin receptor 4 (MC4R), and a set of single nucleotide polymorphisms in the fat mass and obesity (FTO) locus. Obviously, obesity polygenic character involves complex gene-gene and gene-environment interactions and their mutual interactions that result in multi-factorial obese phenotypes (for reviews see 30-32).

Environmental obesogens

Human diseases are entirely or partially caused by environmental chemicals, which introduce genetic and/or epigenetic changes in the genome. Heritable changes in gene expression exclude any modification of the primary DNA sequence. However, they lead to chromatin remodelling through DNA methylation, a complex set of histone modifications, and the influence of non-coding RNAs. Besides the changes in the epigenetic status (33), lifestyle, dietary intakes, and environmental chemicals affect cell transcriptional factors (34), hormones (35, 36), inflammatory mechanisms (37), and gut microbiome in certain organisms (38-41), all of which are contributing factors for obesity epidemic (42-44, Figure 1). The
most important molecular and/or cellular changes that are reflected on obesity phenotypes appearance are further described.

Obesogens (Figure 1) are foreign endocrine disrupting chemicals (EDCs) that inappropriately alter normal development and/or homeostasis of lipid metabolism, adipogenesis, fat storage, obesity, and type 2 diabetes (4, 45-48). EDCs can interfere with normal functions of the endocrine system by disrupting the balanced system of hormones that regulate vital body functions such as growth, stress response, sex development, behaviour, ability to reproduce, production and utilisation of insulin, and metabolic rate. Recent experiments on animals confirmed that EDCs can disrupt the gene-controlled, normal signalling systems that determine every aspect of foetal development. Furthermore, epidemiology studies indicate that exposure to EDCs during the development of a foetus is associated with excess weight and obesity later in life (49).

It has been proposed that dangerous environmental obesogens can be categorised into the following groups of compounds: endocrine disrupting chemicals organotins and bisphenol A (BPA), perfluorooctanoic acid, diisobutyl phthalate, and pharmaceutical obesogens such as thiazolidinediones: rosiglitazone and pioglitazone (45, 47, 48).

Organotins are widespread persistent environmental organic pollutants with potent endocrine-disrupting properties in both vertebrates and invertebrates. They are used as fungicides and pesticides in crops, antifungal agents in wood treatments, slimicides in

<table>
<thead>
<tr>
<th>Disease / disorder</th>
<th>Relation with obesity</th>
<th>Source/publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type II diabetes</td>
<td>80 % correlation of type II diabetes and obesity</td>
<td>Lau, 2008 (2)</td>
</tr>
<tr>
<td></td>
<td>85 % of children with type II diabetes are obese</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Term “diabesity” underscores the strong connection</td>
<td></td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Correlation with obesity in 70 % of cases</td>
<td>Lau, 2008 (2)</td>
</tr>
<tr>
<td>Metabolic syndrome</td>
<td>Higher risk associated with intraabdominal visceral fat tissue</td>
<td>Kopelman, 2007 (3)</td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevated plasma insulin concentrations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin resistance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperglycaemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperlipidaemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gout, liver disease, asthma and pulmonary problems, gall bladder disease, kidney disease, osteoarthritis</td>
<td>Strong connection with obesity and excess weight</td>
<td>Newbold, 2010 (4), Chlebowski, 2005 (5)</td>
</tr>
<tr>
<td>Cancer</td>
<td>Connection with colon and breast cancer 42 %</td>
<td>Lau, 2008 (2)</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>Obesity associated with breast cancer recurrence and mortality through low physical activities, high calorie and fat intake, and changes in hormones (high oestrogen production in adipose tissue)</td>
<td>Chlebowski, 2005 (5), Sauter et al., 2008 (6), Rose and Vona-Davis, 2010 (7)</td>
</tr>
<tr>
<td>Prostate cancer</td>
<td>More aggressive forms are diagnosed in men with higher BMI (by 15 % to 21 % higher risk of fatal prostate cancer or biochemical recurrence) 12 % to 20 % of prostate cancer deaths connected with obesity</td>
<td>Strom et al.,2005 (8), Cao and Ma, 2011 (9)</td>
</tr>
<tr>
<td>Chronic musculoskeletal problems, lumbar, skin problems, obstructive sleep apnoea</td>
<td>Decreased physical activity, BMI >30</td>
<td>Kanasaki and Koya, 2011 (10)</td>
</tr>
</tbody>
</table>
industrial water systems, marine antifouling agents, in polyvinylchloride plastics, and in the textile industry (45, 47, 48). Contaminated drinking water, agricultural products, seafood, and leaching from plastics are the most frequent sources of organotins (50-52). Organotins such as tributyltin (TBT) and triphenyltin are potent activators of nuclear hormone receptors retinoid X receptor (RXRα, -β, and -γ) and peroxisome proliferator-activated receptor γ which regulate adipocyte number, size, and function (53). Moreover, the organotin compound tributyltin, an agonist of both retinoid X receptor and peroxisome proliferator-activated receptor γ, alters the fate of stem cell compartment by sensitising multipotent stromal stem cells to differentiate into adipocytes (49). More recently, studies have confirmed that TBT and tetrabromobisphenol A modify hypothalamic gene regulations resulting in hypothalamic dysregulations (54).

Bisphenol A as a component of polycarbonate plastics is widely used in numerous products such as polycarbonate baby bottles, beverage containers, the linings of food cans, dental composites, and sealants (4). BPA has a potential to bind to the nuclear oestrogen receptor and interact with a variety of other targets in mammalian cells. In addition to acting as an androgen receptor antagonist, BPA interacts with thyroid hormone receptors (55). A variety of abnormalities in the female and male reproductive and mammary gland tissues were found after perinatal exposure to low doses of BPA (55). Exposure to low doses of BPA during prenatal and neonatal periods affected both mice and rats insomuch as their body weight increased (57-60).

Perfluorooctanoic acid and phthalates can negatively affect the adipose homeostasis and lipids. These classes of chemicals include various perfl uoroalkyl compounds and phthalate plasticisers that are widely used as surface repellents and surfactants. Pharmaceutical obesogens, rosiglitazone and pioglitazone (thiazolidinediones) are PPARγ agonists, which improve serum triglycerides and glycaemic control for type 2 diabetes. However, side effects mediated by PPARγ include weight gain in diabetics when such agonists are used for a prolonged time (61, 62), an increase in cardiovascular risks and, for rosiglitazone, an increased risk of acute myocardial infarction, stroke, and heart failure (63).

EDCs can probably affect multiple target mammalian cells through a variety of mechanisms. The most likely mechanism involves direct binding to nuclear receptors such as oestrogen receptor α and/or PPARγ acting as agonists. Another possibility would be their binding to nuclear receptors and acting as antagonists. The indirect EDCs’ effect involves disrupting hormone levels through the inhibition of enzymatic activity or the activation of expression of P450 enzymes (4).

All proposed mechanisms may also interact with each other creating a complex network. However, in the future, when research studies will have clarified the network of reactions in the cell, a complete picture of interactions will be available.
Nutrigenomics: nutrient and gene interaction

Nutrigenomics investigates the effect of interactions between lifestyle, genes (individual genetic variations in single-nucleotide polymorphisms), and food on different/uniform responses to food among individuals and consequently, the relationship of that response with the etiology of common chronic diseases (64, 65).

Evolution has brought about minor changes of human genome but these are able to influence an individual's metabolism and response to food (66).

Nutrigenomics is related to the human genome and, as already mentioned, it tries to describe the cause of some chronic diseases (obesity, diabetes mellitus, cancer) through the interactions between genes and the environment (food, pesticides, and pharmaceuticals) (67). It also attempts to create a personalized nutrition for every individual, according to a unique genetic profile (68, 69).

The individual advice regarding nutrition and lifestyle changes should be based on an analysis of genes, in order to achieve a better health status (70). When managing multifactorial diseases (including obesity), it is crucial to point out that some genotypes (haplotype combinations) are susceptible to nutrition treatments and that genetic differences among individuals could influence the occurrence of obesity and its health implications (71).

It is important to emphasize that some nuclear transcription factors (e.g. PPARγ) are more sensitive to nutrition treatment/interventions than others. For example, Kim et al. (72) selected 31 genes in the liver of obese C57BL/6J mice and showed that genes involved in fatty acid beta-oxidation, fatty acid synthesis, and gluconeogenesis were upregulated, but genes involved in sterol biosynthesis, insulin signalling, and oxidative stress defence system were downregulated with a high-fat diet.

Hence, nutrigenomics aims to develop a diet based on individual genetic variants (73) through the research of the influence of such variants on the connections between food and etiology of obesity (74). It has been shown that individuals with high genetic predisposition for obesity will easily gain weight and will have a different response to weight treatment compared to those with low genetic predisposition (11). Results from studies show that high-fat diets may lead to obesity. One study compared the body mass indexes of individuals according to how much fat they ate and showed that the number of obese individuals was higher among those on a high-fat diet compared with those on a low-fat diet. Also, their body weight changed differently in response to the restriction of calories from fat (1, 75).

It is known that interactions between genes, gender, and the environment alternate the development of a disease. In the Framingham Heart Study, interactions between a promoter polymorphism at the apolipoprotein A1 gene, gender, and dietary poly-unsaturated fatty acid intake modulated plasma concentrations of high-density lipoprotein cholesterol (76), high levels of which protect from cardiovascular diseases.

In another study, Sotos-Prieto et al. (77) showed that the rs1466113 polymorphism in the somatostatin receptor 2 gene was associated with anthropometric variables in the Mediterranean population with differences in food intake.

Interactions between genes and the environment have also been associated with a decrease in the levels of hormone adiponectin. These changes in adiponectin

<table>
<thead>
<tr>
<th>Genotype in obesity</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thriftiness (low metabolic</td>
<td>β-2-adrenergic receptor and β-3 (ADRB2; ADRB3), uncoupling protein 1,</td>
</tr>
<tr>
<td>rate, inadequate thermogenesis)</td>
<td>2, and 3 (UCP1, UCP2, UCP3)</td>
</tr>
<tr>
<td>Hyperphagia (abnormal</td>
<td>dopamine receptor D2 (DRD2); 5-hydroxytryptamine (serotonin) receptor</td>
</tr>
<tr>
<td>regulation of hunger and</td>
<td>2C (HTR2C); leptin (LEP); leptin receptor (LEPR); melanocortin receptor</td>
</tr>
<tr>
<td>satiety)</td>
<td>4 (MC4R); nuclear receptor subfamily 3, group C, member 1 (NR3C1)</td>
</tr>
<tr>
<td>Low rate of lipid oxidation</td>
<td>angiotensin-converting enzyme (ACE), adiponectin (ADIPOQ), guanine</td>
</tr>
<tr>
<td></td>
<td>nucleotide binding protein, β -3 subunit (GNB3), hormone sensitive</td>
</tr>
<tr>
<td></td>
<td>lipase (LIPE), low density lipoprotein receptor (LDLR)</td>
</tr>
<tr>
<td>Adipogenesis (fat storage)</td>
<td>peroxisome proliferator-activated receptor γ (PPARγ); vitamin D receptor</td>
</tr>
<tr>
<td></td>
<td>(VDR), resistin (RETN), interleukin-6 (IL6); tumour necrosis factor α (</td>
</tr>
<tr>
<td></td>
<td>TNF)</td>
</tr>
<tr>
<td>Low physical activity</td>
<td>dopamine receptor D2 (DRD2); melanocortin receptor 4 (MC4R)</td>
</tr>
</tbody>
</table>
level can cause obesity. Ntalla et al. (78) investigated whether variants of adiponectin gene interacted with food/specific components of food and influenced the levels of adiponectin. The results of the study, conducted on healthy school-aged children, showed that a single nucleotide polymorphism rs1501299 and fibre interaction was significantly associated with adiponectin levels.

Consumption of refined carbohydrates contributes to the development of obesity and type 2 diabetes mellitus. Most genes of the metabolic pathways of carbohydrates are associated with quantitative trait loci for obesity and many for type 2 diabetes mellitus. It is significant to underline that metabolic pathway genes have a role in the development of a disease and different appearance of such disease among individuals, which results in different risks for a specific disease (79).

Inflammation plays an important role in the development of health implications of obesity (80) and fat tissue is essential, as obesity is associated with inflammation (81): adipocytes, or fat cells, secrete pro- and anti-inflammatory adipokines (82-84). Reduced adiponectin (85, 86) and increased C-reactive protein (87, 88) concentrations are associated with cardiovascular disease and type 2 diabetes. A decrease in inflammation can prevent health complications associated with obesity. Some food has anti-inflammatory effects (89) and has been associated with the decrease in the prevalence of some chronic diseases related to dietary and lifestyle habits (90, 91). In line with this, Bakker et al. (92) conducted a dietary intervention with antioxidative substances such as resveratrol, green tea extract, α-tocopherol, vitamin C, omega-3 polyunsaturated fatty acids, and tomato extract, and showed that these compounds influenced inflammatory processes, oxidative stress, and metabolism in individuals.

How to maintain a healthy weight after low calorie/low energy treatment is the issue of many studies (93). Peripheral blood mononuclear cells (PBMCs) can help to investigate the response to nutrition interventions (94), and Goyenechea et al. (93) demonstrated the role of pro-inflammatory status in weight changes in obese subjects receiving a low-calorie diet (LCD) during a six-month weight maintenance period. This could help to create individual dietary treatments for maintaining healthy weight. In another study, Goyenechea et al. (95) analysed the expression of two interacting genes (RIPK3 and RNF216) in obese subjects receiving LCD and the authors concluded that the expression of these two genes in PBMCs could identify those obese subjects who will regain more weight after a successful initial weight loss.

Personalised nutrition

Nutrigenetics and personalised nutrition can give every individual an advice on a diet that is in line with personal genetic profile (96). Arkadianos et al. (70) showed that nutrigenetically (gene-nutrition) tailored diets result in better compliance of patients, longer reduction of body weight, and improvement in glucose blood levels.

Negative public opinion on genetic testing in order to create a unique personalised diet, may influence the success of nutrigenomic intervention. Steward-Knox et al. (97) conducted a study in order to determine the opinion of people in Europe on genetic testing and individually tailored nutrition. Individuals who were willing to undertake a genetic test for creating personalised dietary interventions in most cases had high blood cholesterol levels, central obesity, and/or high levels of stress, whereas individuals who were not obese were not willing to have a nutrigenomic intervention.

To summarise, obesity involves an interaction between genetic and environmental factors (98). This is the reason why it is important to include gene–environment information in the management and prevention of excess weight. However, some issues of weight management are still crucial (15): identification of markers that can predict the results of dietary interventions; development of methods for identifying biomarkers; simple and available measurement of markers; and responsible use of individual genetic information.

CONCLUSION

Obesity is caused by the combined impact of genetic, environmental, and lifestyle factors. It represents a risk factor for cardiovascular and metabolic diseases (hypertension, type 2 diabetes, insulin resistance, hyper-insulinaemia, gout, liver disease, gall bladder disease), kidney disease, reproductive problems, sleep apnoea, osteoarthritis, and multiple types of cancer. Overall, it is the culprit for many current health problems in the population of western countries. As the prevalence of obesity continues to increase, it is important to better understand the genetic aspect of obesity and the
importance of the interactions between genes, genome, epigenome, and the environment obesogens. The disputable and known pharmaceutical and environmental obesogens, such as thiazolidinediones, organotins, perfluorooctanoic acid, disobutyl phthalate, and bisphenol A, are still used today and should be banned and removed from the environment.

Also, although nutritional interventions can reduce body mass, the process of gaining weight can be affected by an individual genetic profile. Nutrigenomic approach allows us to explore these interactions and apply them in the management of obesity. Many genes in which polymorphisms can affect the development of obesity are identified, but further investigations are still necessary; especially in the development of new diagnostic methods, categorisation of obesity based on specific genotype, creation of personalised nutrition for treating excess weight, and the most important, effective prevention tools. To conclude, the future of nutrigenomics science brings many challenges for scientists, practitioners, caregivers, and individuals. Investigating obesity and its significant health implications is and will continue to be important, as more effective ways need to be found to resolve this public health problem.

Acknowledgement

This study was supported by a grant No. 0583444-3466 from the Ministry of Science, Education, and Sports, the Republic of Croatia.

REFERENCES

24. Mammès O, Betoulle D, Aubert R, Giraud V, Tuzet S, Petiet A, Colas-Linhart N, Fumeron F. Novel polymorphisms in...

94. Caimari A, Oliver P, Keijer J, Palou A. Peripheral blood mononuclear cells as a model to study the response of energy homeostasis-related genes to acute changes in feeding conditions. OMICS 2010;14:129-41.
96. Rimbach G, Minihane AM. Nutrigenetics and personalised nutrition: how far have we progressed and are we likely to get there. Proc Nutr Soc 2009;68:162-72.
Sažetak

PRETILOST – MEĐUDJELOVANJE GENOMA I OKOLINE

U industrijaliziranom svijetu među odraslim osobama, adolescentima i djecom pretilost je postala jedna od glavnih prijetnja za javno zdravlje ljudi. Njezina je pojavnost pod utjecajem međudjelovanja gena, prehrane, okoliša i načina života. Važni čimbenici rizika vezani su uz okolinu i način života, uključujući čimbenike prisutne već u okruženju fetusa te one prisutne tijekom cijeloga života kao što su kvaliteta prehrane, izloženost kemikalijama, mikroorganizmima i psihičkom stresu. Uklanjanje ili ograničavanje kemijskih tvari i lijekova koji uzrokuju pretilost iz ljudske okoline moglo bi utjecati na opadanje epidemije pretilosti.

Dodatno, nutrigenomika opisuje kako se promjenama u prehrani pojedinca može poboljšati zdravstveno stanje i spriječiti razvoj kroničnih bolesti, uključujući i pretilost, a pritom je potrebno poznavati utjecaj genskog profila na međudjelovanje hrane i porasta tjelesne mase. Nadalje, genske varijacije u genomu pojedinih osoba stvaraju i njihovu predispoziciju za razvoj pretilosti. Stoga se zahvaljujući informacijama o genskom profilu pojedinca, izbjegavanjем tvari koje uzrokuju pretilost i zdravim načinom života može poboljšati kontrola pretilosti i održavati optimalna tjelesna masa.

KLJUČNE RIJEČI: geni, nutrigenomika, prehrana, tvari koje uzrokuju pretilost

CORRESPONDING AUTHOR:
Višnja Bačun-Družina
Faculty of Food Technology and Biotechnology
University of Zagreb
P.O. Box 625, HR-10001 Zagreb, Croatia
E-mail: visnjjabd@pbf.hr