This study was carried out to determine the distribution of particles in classrooms in primary schools located in the centre of the city of Sari, Iran and identify the relationship between indoor classroom particle levels and outdoor PM2.5 concentrations. Outdoor PM2.5 and indoor PM1, PM2.5, and PM10 were monitored using a real-time Micro Dust Pro monitor and a GRIMM monitor, respectively. Both monitors were calibrated by gravimetric method using filters. The Kolmogorov-Smirnov test showed that all indoor and outdoor data fitted normal distribution. Mean indoor PM1, PM2.5, PM10 and outdoor PM2.5 concentrations for all of the classrooms were 17.6 μg m⁻³, 46.6 μg m⁻³, 400.9 μg m⁻³, and 36.9 μg m⁻³, respectively. The highest levels of indoor and outdoor PM2.5 concentrations were measured at the Shahed Boys School (69.1 μg m⁻³ and 115.8 μg m⁻³, respectively). The Kazemi school had the lowest levels of indoor and outdoor PM2.5 (29.1 μg m⁻³ and 15.5 μg m⁻³, respectively). In schools located near both main and small roads, the association between indoor fine particle (PM2.5 and PM1) and outdoor PM2.5 levels was stronger than that between indoor PM10 and outdoor PM2.5 levels. Mean indoor PM2.5 and PM10 and outdoor PM2.5 were higher than the standards for PM2.5 and PM10 and there was a good correlation between indoor and outdoor fine particle concentrations.

KEY WORDS: indoor particle concentrations, outdoor particle concentrations

Recent epidemiological studies have documented an association between changes in ambient particulate matter (PM) concentrations and changes in daily mortality and morbidity (1-3). Furthermore, air quality at schools seems to be a major determinant of health outcomes (4). Most of these studies have emphasised the importance of particulate matter with aerodynamic diameter of less than 10 μm (PM10) and, recently, 2.5 μm (PM2.5), measured at fixed monitoring sites. It seems that traffic-related particles are more toxic than others. Peters et al. (5) have reported that the risk of exposure to black carbon (BC) as a surrogate of traffic particles is higher than to other ambient particulates (5). Schwarz et al. (6) have also reported a stronger association of BC than of PM2.5 with changes in heart rate. In a multi-city study, Dominici et al. (7) have shown that the association between PM10 concentrations and increased risk of death generally remains unchanged after control for other air pollutants.

People spend considerable time indoors: at home, school, work or in vehicles (8-10). School children, the elderly, and other groups of people more susceptible to the effects of poor air quality spend even more time indoors (11). Several studies have reported high concentrations of PM in classrooms (12-17). Major studies about personal exposure to particles (18, 19) have found poor correlation between personal exposure to fine particulate matter and outdoor air particle concentrations, but they have also reported...
good correlation between personal exposure and indoor air particle concentrations.

The aim of this study was to address this issue by determining the distribution of PM1, PM2.5, and PM10 in the classrooms of primary schools located in the centre of the city of Sari and by identifying the relationship between indoor and outdoor PM2.5 concentrations.

Sari is the capital of the Iranian province of Mazandaran, located some 30 km to the south of the Caspian Sea and stretching from the northern slopes of the Elburz Mountains to across the Tajan River. It has a population of 270,000 people residing in the town and about as many residing in the suburbs. Our earlier reports have shown that personal exposure to PM10 among taxi and bus drivers and to PM2.5 in shops in the city centre area are higher than the standards recommended by the US Environmental Protection Agency (EPA) (20-22).

MATERIALS AND METHODS

Our indoor and outdoor monitoring involved primary schools located in the centre of Sari with four major roads of varying traffic density. In Enghlab Street (south) it is about 1,500 vehicles per hour, in 18-Day Street (east) 2,220, in Jomhori Street (west) 1,260, and in Modarres Street (south) 1,250. Khosravi School is located in Enghlab Street; Shahed Boy and Shahed Girl Schools are located on Modarres Street; Kazemi School, Ghaemi School, and Ameneh School are located on three smaller roads less than 100 m away from Jomhori Street. School buildings are about 10 to 40 years old. Classrooms - all accommodating between 27 and 32 pupils - have a similar design, and their area varies from 24 m² to 34.2 m². Floors are stone. No mechanical ventilation or air conditionings were in use during the monitoring period. However, all classrooms were heated by radiators in the cold months.

Over 26 days of a school year (spanning from November 2011 to June 2012), we monitored PM1, PM2.5, and PM10 concentrations indoors and PM2.5 concentrations outdoors. Both indoor and outdoor monitoring started and ended with the classes (from 8:00 a.m. to around 12:30 p.m.). Average indoor monitoring time was 4.39 h (range 2.95 h to 4.7 h), depending on the duration of a particular class. The indoor dust monitor was placed in the centre of the classroom, about 80 cm above the floor, and the outdoor monitor in the school yard at least one metre away from any obstacle and one metre above ground.

For indoor measurements we used a GRIMM real-time aerosol spectrometer and dust monitor (Model 1.108, Grimm Aerosol Technik GmbH, Ainring, Germany). PM1, PM2.5, and PM10 concentrations were recorded at one-minute intervals. This dust aerosol spectrometer has been designed for continuous particle count and for calculating particle mass based on particle density. It has an integrated gravimetric filter that collects all particles after optical measurement for further analysis. Data can be displayed as particle concentration and as mass concentration. Sample air is sucked through a measuring cell and a gravimetric filter by an internal flow-control pump. The filter serves as a dust collector and as gravimetric control of optical measurements.

For outdoor measurements we used a MicroDust Pro real-time monitor (Casella, Bedford, UK). This instrument is calibrated to a known reference dust standard. Different dust types cause a different response from this instrument due to variation in particle size, refractive indices, particle density, and colour. In order to correct for this, it is necessary to calibrate the response of the instrument. This involves the collection of a gravimetric (filtered) sample of the dust after it has passed through the probe optics. To measure PM2.5 concentrations, a size-selective sampling cyclone was used in combination with a particle size adaptor and a small polyurethane foam (PUF) filter that was designed for PM2.5 size fraction monitoring. A small personal sampling pump was used to provide continuous air flow through the gravimetric adaptor and photo detector. For gravimetric calibration, particles were then collected on a 37 mm, 2.0 μm Teflon filter (SKC Inc., Dorset, UK), which was placed in the cassette behind air sample stream. To obtain mean PM2.5 concentrations we divided particle mass (in μg), obtained by weighing the filter, with the volume of sampled air drawn through the instrument (in m³). For calibration we compared mean PM2.5 concentration with the average PM2.5 concentration obtained from direct reading from the MicroDust Pro instrument.

The results for each location had to be corrected with a gravimetric factor – the so-called C-factor. To determine the C-factor and to compare the displayed data, the GRIMM dust monitor and the MicroDust Pro monitor were run side by side in six classrooms for five hours, one day a month over the study period.
The GRIMM monitor was run on the particle concentration mode to measure particles between 0.3 μm and 20 μm, and the MicroDust monitor was run to measure PM$_{2.5}$. Filters were desiccated for 24 h and weighed with a microbalance (resolution 1 μg) three times before and after sampling. Total dust weight on filters was divided with the calculated total volume of air sucked by pumps to determine mean gravimetric concentrations of particles. Running both instruments side by side provided information on actual average gravimetric concentrations, which were then divided by mean particle concentrations downloaded from respective instruments to obtain gravimetric calibration factors. Finally, all real-time data were multiplied by calibration factors obtained for either instrument to obtain actual particle concentrations. In total, we collected data for 7,115 one-minute indoor and outdoor particle concentration readings. Mean correction factors of 1.03 and 1.14 were applied for the GRIMM and the MicroDust Pro monitor data, respectively. One-minute data were used for statistical analysis.

Statistical analysis

The statistic package SPSS v.17 for windows was used for running the Kolmogorov-Smirnov test (K-S test) to assess the normality of the frequency distributions of PM$_1$, PM$_{2.5}$, and PM$_{10}$ concentrations. This statistic package also was used for running descriptive statistics and univariate regression model to assess the association between outdoor PM$_{2.5}$ concentrations and indoor classroom PM$_{4.0}$, PM$_{2.5}$, and PM$_1$. The Microsoft Office EXCEL 2007 software was used to make a graph for demonstration of daily mean indoor PM$_{10}$ and PM$_{2.5}$ concentrations.

RESULTS AND DISCUSSION

The Kolmogorov-Smirnov (K-S) test shows that all indoor particle concentration data fit normal distribution (Figures 1-3). The indoor classroom PM$_{2.5}$ concentrations show distributions that are bi-modal, suggesting that there may be outliers within the indoor classroom PM$_{2.5}$ data. Resuspension of fine particles as a result of student activities may explain transient high indoor classroom particle concentrations. Mean indoor PM$_1$, PM$_{2.5}$, PM$_{10}$, and outdoor PM$_{2.5}$ concentrations were 17.6 μg m$^{-3}$, 46.6 μg m$^{-3}$, 400.9 μg m$^{-3}$, and 36.9 μg m$^{-3}$, respectively. Figure 4 shows daily mean indoor classroom PM$_{2.5}$ and PM$_{10}$ levels. On some days, mean PM$_{2.5}$ and PM$_{10}$ exceeded the respective US EPA standards of 35 μg m$^{-3}$ and 150 μg m$^{-3}$ (23). High concentrations of PM$_{10}$ could be due to resuspension of chalk dust, skin flakes, and insect dander that can increase the particle concentration when the students are active. In Tehran, Halek et al. (17) reported mean indoor classroom PM$_1$, PM$_{2.5}$, and PM$_{10}$ of 19 μg m$^{-3}$, 42 μg m$^{-3}$, and 274 μg m$^{-3}$, respectively. Mean PM$_{2.5}$ and PM$_{10}$ concentrations were lower than in our study (46.6 μg m$^{-3}$ and 400.9 μg m$^{-3}$, respectively), whereas mean indoor PM$_1$ concentration and mean outdoor PM$_{2.5}$ in our study were similar with those reported by in Tehran (17.6 μg m$^{-3}$ and 36.9 μg m$^{-3}$ vs. 19 μg m$^{-3}$ and 38 μg m$^{-3}$, respectively). In Munich, Germany,

![Figure 1 Distribution of indoor classroom PM$_1$ concentrations](image1)

![Figure 2 Distribution of indoor classroom PM$_{2.5}$ concentrations](image2)
Table 1 shows the descriptive statistics for indoor PM$_{10}$, PM$_{2.5}$, and PM$_{1}$ concentrations by school. Khosravi school showed the highest mean PM$_{10}$ concentration and Ameneh School the lowest. The highest indoor and outdoor PM$_{2.5}$ concentration was recorded in Shahed Boy School (69.1 μg m$^{-3}$ and 115.8 μg m$^{-3}$, respectively). Kazemi School, in turn, showed the lowest indoor and outdoor PM$_{2.5}$ (29.1 μg m$^{-3}$ and 15.5 μg m$^{-3}$, respectively). Despite
the highest average PM$_{10}$, Khosravi School also had the lowest mean PM$_1$ concentration (12.1 µg m$^{-3}$).

We established a significant correlation between indoor classroom PM$_{1}$, PM$_{2.5}$, and PM$_{10}$ concentrations and outdoor PM$_{2.5}$ concentrations for both schools located near main and small roads. However, Shahed boys school, which located on a main road, showed the highest mean indoor and outdoor PM$_{2.5}$ levels and Kazemi school located on a small road had the lowest mean indoor and outdoor PM$_{2.5}$. Mean indoor PM$_{10}$ and PM$_{2.5}$ concentrations in schools located on the main roads were significantly higher than in schools on small roads (486.3 µg m$^{-3}$ and 49.2 µg m$^{-3}$ vs. 320.7 µg m$^{-3}$ and 44.3 µg m$^{-3}$, respectively). However, mean indoor PM$_1$ concentration was higher in schools on small roads than in schools on the main roads (21.0 µg m$^{-3}$ vs. 14.0 µg m$^{-3}$ respectively). One possible explanation is that PM$_1$ and PM$_{2.5}$, which were mainly emitted from combustion sources, can distribute in the ambient easily and might be an effective factor for indoor particle concentrations. Similar studies concluded that proximity to traffic is a major determinant of the level of student exposure (12, 27).

The association between indoor fine particle concentrations (PM$_{2.5}$ and PM$_1$) and outdoor PM$_{2.5}$ levels was stronger than between indoor PM$_{10}$ concentrations and outdoor PM$_{2.5}$ levels (Table 2). This is most likely because outdoor air enters classrooms through doors and windows, which are generally left open because of a moderate climate in Sari. On the other hand, the reason for the weak correlation between coarse PM$_{10}$ indoor particles and outdoor PM$_{2.5}$ concentrations is that coarse particles are mainly produced by indoor student activities. In contrast to our study, in which indoor PM$_{2.5}$ was higher than outdoor PM$_{2.5}$, Buonanno et al. (24) reported higher concentrations of outdoor than indoor particles of up to 3 µm in Cassino, Italy (24).

Acknowledgment

We wish to thank all primary school managers and teachers for their cooperation in the study. Our thanks also goes to Mazandaran University of Medical Sciences for financial support.

REFERENCES

5. Peters A, Dockery DW, Muller JE, Mittleman MA. Increased particulate air pollution and the triggering of myocardial infarction. Circulation 2001;103:2810-5. doi: 10.1161/01.CIR.103.23.2810

Table 2 Relationship between outdoor PM$_{2.5}$ and indoor classroom PM$_{10}$, PM$_{2.5}$, and PM$_{1}$ levels in schools located close to main or small roads.

<table>
<thead>
<tr>
<th>PM</th>
<th>School location</th>
<th>Indoor PM$_{10}$</th>
<th>Indoor PM$_{2.5}$</th>
<th>Indoor PM$_{1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor PM$_{2.5}$</td>
<td>Main roads</td>
<td>0.09</td>
<td>0.35</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>Small roads</td>
<td>0.08</td>
<td>0.30</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Unauthenticated Download Date | 6/22/17 3:28 AM

Mohammadyan M and Shabankhani B. PARTICULATE MATTER IN IRANIAN PRIMARY SCHOOLS

Arh Hig Rada Toksikol 2013;64:371-377
Sažetak

KONCENTRACIJE LEBĐEĆIH ČESTICA PM$_1$, PM$_{2,5}$, PM$_{10}$ U ZATVORENOM PROSTORU TE KONCENTRACIJE PM$_{2,5}$ ČESTICA U OTVORENOM PROSTORU OSNOVNIH ŠKOLA U GRADU SARIIJ U IRANU

Svrha je ovog istraživanja bila utvrditi raspodjelu lebdećih čestica u osnovnim školama u središtu iranskoga grada Sarja te vidjeti jesu li razine lebdećih čestica mjerenih u dvorištima škola i u učionicama međusobno povezane. Vani su mjerene PM$_{2,5}$ čestice pomoću stalnog Micro Dust Pro monitora, a unutra PM$_{1}$, PM$_{2,5}$ i PM$_{10}$ čestice pomoću GRIMM monitora. Oba su instrumenta kalibrirana gravimetrijskom metodom pomoću filtara. Kolmogorov-Smirnovljev test pokazao je normalnu raspodjelu vanjskih mjerenja. Srednje razine unutrašnjih čestica PM$_{1}$, PM$_{2,5}$, PM$_{10}$ odnosno vanjskih PM$_{2,5}$ čestica, za sve škole iznosile 17,6 μg m$^{-3}$, 46,6 μg m$^{-3}$, 400,9 μg m$^{-3}$, odnosno 36,9 μg m$^{-3}$. Najviše razine unutrašnjih i vanjskih PM$_{2,5}$ čestica zabilježene u školi Shahed za dječake (69,1 μg m$^{-3}$ i 115,8 μg m$^{-3}$), a najniže u školi Kazemi (29,1 μg m$^{-3}$ i 15,5 μg m$^{-3}$). Bez obzira na to jesu li škole bile smještene na glavnim ili sporednim ulicama, povezanost između razina unutrašnjih sitnih čestica (PM$_{2,5}$ i PM$_{1}$) i razina PM$_{2,5}$ vanjskih čestica bila je snažnija nego između razina PM$_{10}$ čestica izmjerenih unutra i PM$_{2,5}$ čestica izmjerenih vani. Srednje razine PM$_{2,5}$ i PM$_{10}$ čestica u učionicama te PM$_{1}$ čestica u dvorištima škola bile su više od standarda, a razine sitnih čestica u zatvorenom i na otvorenom dobro su kolerirale.

KLJUČNE RIJEČI: unutrašnje čestice, vanjske čestice

CORRESPONDING AUTHOR:

Mahmoud Mohammadyan
Khazan Abad Road, Mazandarn University Campus
Sari, Iran
E-mail: mohammadyan@yahoo.com