Efficiency of hepatocyte pretreatment with coenzyme Q\textsubscript{10} against statin toxicity

Mohammad Ali Eghbal1,2,3, Narges Abdoli2,3,4, and Yadollah Azami2,3

Drug Applied Research Centre1, Biotechnology Research Centre2, Pharmacology and Toxicology Department, School of Pharmacy3, Students’ Research Committee4, Tabriz University of Medical Sciences, Tabriz, Iran

Statins are potent cholesterol-lowering drugs that can have serious adverse effects on the muscles and liver. The aim of our \textit{in vitro} study was to establish the protective effect of coenzyme Q\textsubscript{10} (CoQ\textsubscript{10}, in its optimal dose of 200 µmol L-1) against cytotoxicity induced by atorvastatin, simvastatin, and lovastatin in isolated rat hepatocytes by observing parameters such as cell death, reactive oxygen species formation, lipid peroxidation, mitochondrial membrane potential, and cellular reduced and oxidised glutathione content. Our findings have shown that pretreatment with CoQ\textsubscript{10} was effective in reducing the toxic effects of statins in rat hepatocytes. This work demonstrates that the addition of CoQ\textsubscript{10} to statin treatment regimens may protect hepatocytes (and also other types of cells) from statin-induced injuries and alleviate their side effects.

\textbf{KEY WORDS}: atorvastatin; hepatotoxicity; lipid peroxidation; lovastatin; oxidative stress; reactive oxygen species; simvastatin; ubiquinone

While the effects of statins in reducing the risk of cardiovascular disease are well established, less is known about their risks, side effects (1), and toxicity (2–5).

Coenzyme Q\textsubscript{10} (CoQ\textsubscript{10}), also known as ubiquinone, is a potent antioxidant, membrane stabiliser (6), and an integral cofactor in the mitochondrial respiratory chain (7) that helps to generate adenosine triphosphate (ATP) (8). It may also regulate genes associated with cell metabolism (9, 10), and its depletion may have a role in statin-induced myalgia (11, 12).

In several clinical studies Q\textsubscript{10} was supplemented to statins to see whether Q\textsubscript{10} would decrease statin-induced side effects (10, 13, 14). These studies were small and underpowered, and have found no protective effect of Q\textsubscript{10} supplementation.

Based on our earlier \textit{in vitro} finding (4) of statin hepatotoxicity through reactive oxygen species (ROS) formation and consequent oxidative stress and on the evidence of reduced oxidative stress in hepatocytes treated with different antioxidants (15), this study aimed to establish the protective role of CoQ\textsubscript{10} against statin toxicity in rat hepatocytes by observing its effects on parameters such as ROS formation, lipid peroxidation (LPO), mitochondrial membrane potential, cellular reduced and oxidised glutathione (GSH/GSSG), and cell viability. Our secondary aim was to establish whether these effects were time-dependent or not.

\textbf{MATERIALS AND METHODS}

\textbf{Chemicals}

Atorvastatin, simvastatin, lovastatin, CoQ\textsubscript{10}, rhodamine 123, 5,5′-dithio-bis (2-nitro-benzoic acid) (DTNB), 2′,7′-dichlorofluorescin diacetate (DCF),
glutathione reductase from baker’s yeast, β-nicotinamide adenine dinucleotide (NADPH), and collagenase from Clostridium histolyticum were purchased from Sigma-Aldrich (St. Louis, MO, USA). 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES), 2-vinylpyridine, triethanolamine, and oxidised glutathione (GSSG) were obtained from Acros (New Jersey, NJ, USA). Bovine serum albumin was purchased from Roche Diagnostics (Indianapolis, IN, USA). Ethyleneglycol-bis(ρ-aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA), N-methylthiourea, trichloroacetic acid (TCA), and trypan blue were obtained from Merck (Darmstadt, Germany). Thiobarbituric acid was obtained from SERVA (Heidelberg, Germany). All salts used for preparing buffer solutions were of analytical grade and obtained from Merck.

Hepatocyte isolation

Hepatocytes were isolated from 18 male Sprague-Dawley rats (weighing 250–300 g) raised at Tabriz University of Medical Sciences, Tabriz, Iran, caged in standard conditions (temperature 21–23 °C, relative humidity 50–60 %) and fed on standard chow diet with free access to water. The animals were handled and used according to the animal handling protocol of Tabriz University of Medical Sciences, approved by a local ethics committee.

The procedure involved two-step collagenase perfusion as described by Moldeus et al. (16). About 85–90 % of hepatocytes were viable at the time of isolation, as established by the trypan blue uptake test (17). Viable cells were suspended in Krebs-Henseleit buffer (1x10^6 cells mL⁻¹) containing 12.5 mmol L⁻¹ of HEPES and incubated under a stream of carbogen gas (95 % O₂ and 5 % CO₂) in continuously rotating round-bottomed 50 mL flasks at 37 °C. Hepatocytes were kept under these conditions for 30 min to achieve equilibrium between the gas and liquid phases before the addition of chemicals.

Cell viability and treatment doses

The viability of cells treated with atorvastatin, simvastatin, lovastatin, and CoQ₁₀ was assessed using the trypan blue (0.1 %, w/v) uptake test described elsewhere (17) at incubation hour one, two, and three. For this test, atorvastatin, simvastatin and/or CoQ₁₀ were dissolved in methanol and lovastatin in dimethyl sulfoxide. The maximum volume of the solvent was 20 µL. In the absence of statins, none of the solvents affected hepatocyte viability at the concentrations used.

As described elsewhere (4), LC₅₀ was a drug concentration which caused 50 % cell death after 120 min of incubation. For atorvastatin it was 450 µmol L⁻¹, for simvastatin 200 µmol L⁻¹, and for lovastatin 200 µmol L⁻¹.

By trying out different doses of CoQ₁₀, we found that the optimum effective dose of CoQ₁₀ was 200 µmol L⁻¹. We then experimented with treatment times by adding this optimal CoQ₁₀ dose 30 min before statins, at the same time with statins, and 30 min after statins. The most effective timing was 30 min before statins (data not shown). In other words, all further experiments in this study were carried out with 200 µmol L⁻¹ of CoQ₁₀ added 30 min before statins. These concentrations are much higher than those found in serum during statin treatment which is in the range of 1–10 nmol L⁻¹ (18).

We used the accelerated cytotoxicity mechanism screening (ACMS) technique with freshly isolated rat hepatocytes to explore the mechanisms of statin-induced toxicity and possible protective effects of CoQ₁₀. This technique is useful and important in determining the cytotoxic effectivenes of a drug or xenobiotic in a freshly isolated rat hepatocyte suspension over two to three hours. A major advantage of ACMS is that a high drug dose over these two to three hours exhibits the same hepatotoxicity in vitro as would a lower drug dose over a longer period of time (24 to 48 h) exhibit in vivo (19, 20). In other words, this method can be used to characterise and predict hepatotoxicity in vivo.

ROS formation

ROS formation was measured as described earlier (21). In short, we added 1.6 µmol L⁻¹ of DCF to hepatocytes incubated with statins, where it hydrolysed to non-fluorescent dichlorofluorescein (DCFH) and then reacted with ROS to form highly fluorescent DCFH. Fluorescence intensity was measured in 1 mL of hepatocyte suspension (10⁶ cells) using a Jasco FP-750 spectrofluorometer (Jasco Corporation, Tokyo, Japan) at excitation and emission wavelengths of 500 and 520 nm, respectively.

LPO assay

Lipid peroxidation was determined using the thiobarbituric acid reactive substances (TBARS) assay, which measures aldehydes formed by
degradation of lipid hydroperoxides. Absorbance was recorded by a Pharmacia Biotech Ultraspec® 2000 spectrophotometer (Cambridge, UK) at 532 nm after treating 1.0 mL aliquots of hepatocyte suspension (10⁶ cells mL⁻¹) with trichloroacetic acid (70 %, w/v) and boiling the supernatant with thiobarbituric acid (0.8 %, w/v) for 20 min (22).

Cellular GSH/GSSG

Reduced and oxidised glutathione (GSH and GSSG) hepatocyte levels were determined using the enzymatic recycling method (23). To determine GSH, we took 1 mL aliquots of suspended cells (10⁶ cells mL⁻¹) and centrifuged them with 2 mL of 5 % trichloroacetic acid. Then we added 0.5 mL of Ellman’s reagent (0.0198 % DTNB in 1 % sodium citrate) and 3 mL of phosphate buffer (pH 8.0). The absorbance of developed colour was determined at 412 nm using a Biotech Pharmacia Ultraspec® 2000 spectrophotometer.

To assess hepatocyte GSSG levels, we first bonded cellular GSH with 2-vinylpyridine and then neutralised the excess of 2-vinylpyridine with triethanolamine. GSSG was then reduced to GSH with glutathione reductase and NADPH. The amount of GSH formed in this way was measured as described above (23).

Mitochondrial membrane potential assay

Mitochondrial membrane potential (MMP) was assessed by monitoring the uptake of rhodamine 123, as described elsewhere (24, 25). Isolated cells were extracted and then resuspended in their original media containing 1.5 μmol L⁻¹ of rhodamine 123. After 10 min of incubation, the cells were centrifuged and supernatant absorption measured with a Jasco® FP-750 spectrofluorometer. The amount of dye remaining in the supernatant was inversely proportional to MMP. The results are reported as the difference in fluorescence intensity between control and treated cells and expressed as percentage of control.

Statistical analysis

The chi-square test was used for cell viability, cellular GSH, and MMP. One-way analysis of variance, followed by Tukey’s post-hoc test, was used for LPO and ROS formation. A p-value of <0.05 was considered significant.

RESULTS

Results are shown as mean±standard error (SE) of marker measurements from at least three separate experiments. The cell viability test (with trypan blue) showed that atorvastatin, simvastatin, and lovastatin were toxic to hepatocytes in a time-dependent manner (Table 1). The most toxic was simvastatin, but CoQ₁₀ effectively reduced cell death induced by all the statins. Statins significantly depleted cellular glutathione reservoirs (Figure 1) and increased the levels of oxidised glutathione (Figure 2), which is an indicator of oxidative stress (22). Thirty-minute pretreatment of hepatocytes with CoQ₁₀ significantly lowered GSSG and increased GSH levels (Figure 1

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Incubation time / min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Control</td>
<td>18±1</td>
</tr>
<tr>
<td>CoQ₁₀ 200 μmol L⁻¹</td>
<td>15±1</td>
</tr>
<tr>
<td>Atorvastatin 450 μmol L⁻¹</td>
<td>36±1 a</td>
</tr>
<tr>
<td>+ CoQ₁₀ 200 μmol L⁻¹</td>
<td>28±1</td>
</tr>
<tr>
<td>Simvastatin 200 μmol L⁻¹</td>
<td>38±2 a</td>
</tr>
<tr>
<td>+ CoQ₁₀ 200 μmol L⁻¹</td>
<td>34±3</td>
</tr>
<tr>
<td>Lovastatin 200 μmol L⁻¹</td>
<td>39±2 a</td>
</tr>
<tr>
<td>+ CoQ₁₀ 200 μmol L⁻¹</td>
<td>30±3</td>
</tr>
</tbody>
</table>

* Significantly different from control (n=3, chi-square, p<0.05); a Significantly different from statin-treated group (n=3, chi-square, p<0.05)
and Figure 2). Similarly, statins significantly increased ROS formation, and CoQ$_{10}$ pretreatment effectively attenuated the process (Figure 3). The same is true for LPO (Figure 4), confirming earlier findings (26). Statins also decreased MMP in respect to control cells, while CoQ$_{10}$ (200 µmol L$^{-1}$) pretreatment effectively countered their effects (Figure 5).

DISCUSSION

Our study has confirmed the beneficial, cytoprotective effects of CoQ$_{10}$ against statin-induced oxidative stress, as it significantly improved all the investigated parameters. We already know that CoQ$_{10}$ participates in the electron transport chain in mitochondria (27) and that statins can interfere with CoQ$_{10}$, compromising cellular energy production (28). La Guardia et al. (29) have demonstrated that simvastatin inhibits mitochondrial respiration, depletes CoQ$_{10}$, and increases hydrogen peroxide production. A small increase in CoQ$_{10}$ concentration in mitochondrial membranes can therefore restore mitochondrial respiration (7) as one of the mechanisms to protect liver cells from statin toxicity.

The second fundamental property of CoQ$_{10}$ involves its antioxidative (free radical scavenging) function (30, 31). The efficacy of CoQ$_{10}$ treatment against mitochondrial dysfunction induced by beta
Amyloid has been evaluated in the brains of diabetic rats, where CoQ₁₀ treatment attenuated the decrease in oxidative phosphorylation and prevented increased hydrogen peroxide production (32). This effect, in addition to its role in mitochondria, may be due to the ability of CoQ₁₀ to scavenge free radicals and reactive metabolites produced during statin metabolism, which is also supported by lower ROS formation, MMP, LPO, and GSH oxidation in our experiments.

Ali et al. (33) have shown that L-carnitine and CoQ₁₀ have a pronounced prophylactic effect against liver damage induced by halogenated alkanes such as carbon tetrachloride (CCl₄). In that study, the investigators pretreated rats with CoQ₁₀ 24 h before the administration of CCl₄. This is in accordance with our finding that the best protection was achieved with CoQ₁₀ pretreatment. Most toxins start by affecting the cytoplasm. However, the major site of action for CoQ₁₀ is the mitochondrion, where it is needed for electron transfer in mitochondrial respiration. If CoQ₁₀ is consumed in the cytoplasm as an antioxidant, it will fall short of its role in the mitochondrial respiratory chain. However, if CoQ₁₀ abounds in the mitochondria before toxic effects take place, it will be able to counteract both the reactive metabolites in the cytoplasm and ROS produced in the mitochondria.
While the ACMS method we used in our in vitro experiments may have minor limitations related to short incubation time (34), it simulates in vivo effects of statins and CoQ₁₀ pretty well (19, 20). However, only clinical trials will be able to answer which CoQ dose and timing provide the best protection against statin-related side effects in humans.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgments

The authors wish to thank the Faculty of Pharmacy and Drug Applied and Biotechnology Research Centers (Tabriz University of Medical Sciences) for financial and technical support. We would also like to thank the University Students’ Research Committee for technical support. This research was a part of Narges Abdoli’s PhD thesis.

REFERENCES

Sažetak

Djelotvornost predtretmana štakorskih hepatocita koenzimom Q_{10} protiv toksičnosti statina

Statini su snažni lijekovi za snižavanje kolesterola, koji mogu izazvati ozbiljne nuspojave u mišićima i jetrima. Svrha je ovog in vitro istraživanja bila utvrditi zaštitno djelovanje koenzima Q_{10} (CoQ_{10}, u optimalnoj dozi od 200 µmol L^{-1}) protiv citotoksičnosti atorvastatina, simvastatina i lovastatina u izoliranih štakorskih hepatocita kroz parametre poput vijabilnosti, nastanka reaktivnih kisikovih čestica, lipidne peroksidacije, potencijala mitohondrijske membrane te reduciranog i oksidiranog glutatiana. Rezultati su pokazali da predtretman štakorskih hepatocita CoQ_{10} djelotvorno ublažava toksične učinke statina te da bi njegovo kombiniranje sa statinima moglo zaštititi hepatocite (i druge vrste stanica) od oštećenja izazvanih statinima te ublažiti nuspojave povezane s ovim lijekovima.

KLJUČNE RIJEČI: atorvastatin; hepatotoksičnost; lipidna peroksidacija; lovastatin; oksidativni stres; reaktivne kisikove čestice; simvastatin; ubikvinon

CORRESPONDING AUTHOR:

Mohammad Ali Eghbal
Tabriz University of Medical Sciences,
Pharmacology and Toxicology Department,
School of Pharmacy, Tabriz, Iran
E-mail: maeghbal@yahoo.com