On a subclass of analytic functions involving harmonic means

Andreea-Elena Tudor and Dorina Răducanu

Abstract

In the present paper, we consider a generalised subclass of analytic functions involving arithmetic, geometric and harmonic means. For this function class we obtain an inclusion result, Fekete-Szegő inequality and coefficient bounds for bi-univalent functions.

1 Introduction

Let \(U_r = \{ z \in \mathbb{C} : |z| < r \} \) \((r > 0)\) and let \(U = U_1 \) denote the unit disk.

Let \(A \) be the class of all analytic functions \(f \) in \(U \) of the form:

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad z \in U.
\]

Further, by \(S \) we shall denote the class of all functions in \(A \) which are univalent in \(U \). It is known (see [6]) that if \(f \in S \), then \(f(U) \) contains the disk \(\{ |w| < \frac{1}{4} \} \). Here \(\frac{1}{4} \) is the best possible constant known as the Koebe constant for \(S \). Thus every univalent function \(f \) has an inverse \(f^{-1} \) defined on some disk containing the disk \(\{ |w| < \frac{1}{4} \} \) and satisfying:

\[
f^{-1}(f(z)) = z, \quad z \in U \quad \text{and} \quad f(f^{-1}(w)) = w, \quad |w| < r_0(f), \quad r_0(f) \geq \frac{1}{4},
\]

Key Words: Analytic functions, Fekete-Szegő inequality, bi-univalent functions.

2010 Mathematics Subject Classification: 30C45.
Received: 30 April, 2014.
Accepted: 29 June, 2014.

267
Lemma 3.

\[f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \ldots \]

(2)

We denote by \(S^* \) the class of analytic functions which are starlike in \(U \).

Let \(f \in A \) and \(\alpha, \beta \in \mathbb{R} \). We define the following function:

\[F(z) = [f(z)^{1-\alpha}(zf'(z))^\alpha]^{1-\beta} \cdot [(1 - \alpha)f(z) + \alpha zf'(z)]^\beta, \quad \alpha, \beta \in \mathbb{R}. \]

(3)

Remark 1. It is easy to observe that for specific values of \(\beta \), the function \(F(z) \) reduces to some generalised means. If \(\beta = 0 \) we obtain generalised geometric means, if \(\beta = 1 \) we obtain generalised arithmetic means and if \(\beta = -1 \) we obtain generalised harmonic means of functions \(f(z) \) and \(zf'(z) \).

Definition 1. A function \(f \in A \) is said to be in the class \(H_{\alpha,\beta} \), \(\alpha, \beta \in \mathbb{R} \), if the function \(F(z) \) defined by (3) is starlike, that is

\[\Re\left\{ (1 - \beta)\left[(1 - \alpha)\frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right] + \beta \frac{zf'(z) + \alpha zf''(z)}{(1 - \alpha)f(z) + \alpha zf'(z)} \right\} > 0, \quad z \in U. \]

(4)

In order to prove our main results we will need the following lemmas.

Lemma 1. [9, p.24] Let \(q \in Q \), with \(q(0) = a \), and let \(p(z) = a + a_n z^n + \ldots \) be analytic in \(U \) with \(p(z) \not\equiv a \) and \(n \geq 1 \). If \(p \) is not subordinate to \(q \) then there exist \(z_0 = r_0 e^{i\theta_0} \in U \) and \(\zeta_0 \in \partial U \setminus E(q) \) and \(m \geq n \geq 1 \) for which \(p(U_{r_0}) \subset q(U) \) and:

1. \(p(z_0) = q(\zeta_0) \),
2. \(z_0 p'(z_0) = m \zeta_0 q'(\zeta_0) \),
3. \(\Re\left\{ \frac{z_0 q''(\zeta_0)}{p'(z_0)} + 1 \right\} \geq m \Re\left\{ \frac{q''(\zeta_0)}{q'(\zeta_0)} + 1 \right\} \).

Denote by \(\mathcal{P} \) the class of analytic functions \(p \) normalized by \(p(0) = 1 \) and having positive real part in \(U \).

Lemma 2. [6] Let \(p \in \mathcal{P} \) be of the form \(p(z) = 1 + p_1 z + p_2 z^2 + \ldots \), \(z \in U \). Then the following estimates hold

\[|p_n| \leq 2, \quad n = 1, 2, \ldots \]

Lemma 3. [4] If \(p \in \mathcal{P} \) is of the form \(p(z) = 1 + p_1 z + p_2 z^2 + \ldots \), \(z \in U \). Then

\[|p_2 - vp_1^2| \leq \begin{cases} -4v + 2, & v \leq 0, \\ 2, & 0 \leq v \leq 1, \\ 4v - 2, & v \geq 1. \end{cases} \]
When \(v < 0 \) or \(v > 1 \), the equality holds if and only if \(p_1(z) = \frac{1+z}{1-z} \) or one of its rotations. If \(0 < v < 1 \) then the equality holds if and only if \(p_1(z) = \frac{1+z^2}{1-z^2} \) or one of its rotations. If \(v = 0 \), the equality holds if and only if

\[
p_1(z) = \left(\frac{1}{2} + \frac{1}{2} \lambda\right) \frac{1+z}{1-z} + \left(\frac{1}{2} - \frac{1}{2} \lambda\right) \frac{1-z}{1+z}, \quad \lambda \in [0,1]
\]

or one of its rotations. If \(v = 1 \), the equality holds if and only if \(p_1 \) is the reciprocal of one of the functions such that the equality holds in the case of \(v = 0 \).

2 Inclusion result

In this section we show that the new class \(H_{\alpha,\beta} \) is a subclass of the class of starlike functions.

Theorem 1. Let \(\alpha, \beta \in \mathbb{R} \) such that \(\alpha \beta (1 - \alpha) \geq 0 \). Then

\[H_{\alpha,\beta} \subset S^* \subset S. \]

Proof. Let \(f \) be in the class \(H_{\alpha,\beta} \) and let \(p(z) = \frac{zf'(z)}{f(z)} \). Then from (4) we obtain that \(f \in H_{\alpha,\beta} \) if and only if

\[
\Re \left\{ \alpha(1 - \beta) \frac{zp'(z)}{p(z)} + \alpha \beta \frac{zp'(z)}{1 - \alpha + \alpha p(z)} \right\} > 0. \tag{5}
\]

Let

\[
q(z) = \frac{1+z}{1-z} = 1 + q_1 z + \cdots. \tag{6}
\]

Then \(\Delta = q(\mathbb{D}) = \{w : \Re w > 0\} \), \(q(0) = 1, E(q) = \{1\} \) and \(q \in Q \). To prove that \(f \in S^* \) it is enough to show that

\[
\Re \left\{ \alpha(1 - \beta) \frac{zp'(z)}{p(z)} + \alpha \beta \frac{zp'(z)}{1 - \alpha + \alpha p(z)} \right\} > 0 \Rightarrow p(z) < q(z).
\]

Suppose that \(p(z) \not< q(z) \). Then, from Lemma 1, there exist a point \(z_0 \in U \) and a point \(\zeta_0 \in \partial U \setminus \{1\} \) such that \(p(z_0) = q(\zeta_0) \) and \(\Re p(z) > 0 \) for all \(z \in U_{x_0} \). This implies that \(\Re p(z_0) = 0 \), therefore we can choose \(p(z_0) \) of the form \(p(z_0) := ix \), where \(x \) is a real number. Due to symmetry, it is sufficient to consider only the case where \(x > 0 \). We have

\[
\zeta_0 = q^{-1}(p(z_0)) = \frac{p(z_0) - 1}{p(z_0) + 1},
\]
then \(z_0p'(z_0) = m \zeta_0q'(\zeta_0) = -m(x^2 + 1) = y \), where \(y < 0 \).

Thus, we obtain:

\[
\mathbb{R} \left(\alpha(1 - \beta) \frac{z_0p'(z_0)}{p(z_0)} \right) + \mathbb{R} \left(\alpha \beta \frac{z_0p'(z_0)}{1 - \alpha + \alpha p(z_0)} \right) = \mathbb{R} \left(\alpha(1 - \beta) \frac{y}{ix} \right) + \mathbb{R} \left(\frac{\alpha \beta y}{1 - \alpha + \alpha ix} \right) = 0 + \frac{y |\alpha \beta(1 - \alpha)|}{|1 - \alpha + \alpha ix|^2} \leq 0.
\]

This contradicts the hypothesis of the theorem, therefore \(p < q \) and the proof of Theorem 1 is complete. \(\Box \)

3 Fekete-Szegö problem

In 1933 M. Fekete and G. Szegö obtained sharp upper bounds for \(|a_3 - \mu a_2^2| \) for \(f \in S \) and \(\mu \) real number. For this reason, the determination of sharp upper bounds for the non-linear functional \(|a_3 - \mu a_2^2| \) for any compact family \(F \) of functions \(f \in A \) is popularly known as the Fekete-Szegö problem for \(F \).

For different subclasses of \(S \), the Fekete-Szegö problem has been investigated by many authors (see [2], [4], [11]).

In this section we will solve the Fekete-Szegö problem for the class \(H_{\alpha,\beta} \), where \(\alpha \) and \(\beta \) are positive real numbers.

Theorem 2. Let \(\alpha, \beta, \mu \) be positive real numbers. If the function \(f \) given by (1) belongs to the class \(H_{\alpha,\beta} \), then

\[
|a_3 - \mu a_2^2| \leq \begin{cases}
-4\mu \frac{1}{(1 + \alpha)^2} + \frac{2(\alpha - 1)(1 + \alpha \beta) + (\alpha + 1)(5 + \alpha)}{(1 + 2\alpha)(1 + \alpha)^2}, & \mu \leq \sigma_1, \\
\frac{1}{1 + 2\alpha}, & \sigma_1 \leq \mu \leq \sigma_2, \\
\frac{4\mu}{(1 + \alpha)^2} - \frac{2(\alpha - 1)(1 + \alpha \beta) + (\alpha + 1)(3 - \alpha)}{(1 + 2\alpha)(1 + \alpha)^2}, & \mu \geq \sigma_2.
\end{cases}
\]

where

\[
\sigma_1 = \frac{1 + 3\alpha - \alpha \beta + \alpha^2 \beta}{2(1 + 2\alpha)}, \quad \sigma_2 = \frac{2 + 5\alpha + \alpha^2 - \alpha \beta + \alpha^2 \beta}{2(1 + 2\alpha)}.
\]

Proof. Let \(f \) be in the class \(H_{\alpha,\beta} \) and let \(p \in \mathcal{P} \). From (4) we obtain

\[
\left\{ (1 - \beta) \left[(1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right] + \beta \frac{zf'(z) + \alpha z^2 f''(z)}{(1 - \alpha) f(z) + \alpha z f'(z)} \right\} = p(z).
\]

Since \(f \) has the Taylor series expansion (1) and \(p(z) = 1 + p_1 z + p_2 z^2 + \ldots, z \in U \), we have

\[
1 + (1 + \alpha)a_2 z + \left[2(1 + 2\alpha)a_3 - (1 + 3\alpha - \alpha \beta + \alpha^2 \beta) a_2^2 \right] z^2 + \ldots = \begin{cases}
1 + p_1 z + p_2 z^2 + \ldots, \quad (7)
\end{cases}
\]

(\(p = \left(\begin{array}{c} p_1 \ p_2 \end{array} \right) \))
Therefore, equating the coefficients of z^2 and z^3 in (7), we obtain

$$a_2 = \frac{p_1}{1 + \alpha}, \quad a_3 = \frac{1}{2(1 + 2\alpha)} \left[p_2 + \frac{(1 + 3\alpha - \alpha\beta + \alpha^2\beta)p_1^2}{(1 + \alpha)^2} \right].$$

So, we have

$$a_3 - \mu a_2^2 = \frac{1}{2(1 + 2\alpha)} (p_2 - vp_1^2),$$

where

$$v = \frac{2(1 + 2\alpha)}{(1 + \alpha)^2} \mu - \frac{1 + 3\alpha - \alpha\beta + \alpha^2\beta}{(1 + \alpha)^2}. \tag{8}$$

Now, our result follows as an application of Lemma 3. \Box

4 Subclass of bi-univalent function

A function $f \in \mathcal{A}$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. Let σ be the class of all functions $f \in \mathcal{S}$ such that the inverse function f^{-1} has an univalent analytic continuation to $\{|w| < 1\}$. The class σ, called the class of bi-univalent functions, was introduced by Levin [7] who showed that $|a_2| < 1.51$. Branan and Clunie [3] conjectured that $|a_2| \leq \sqrt{2}$. On the other hand, Netanyahu [10] showed that $\max_{f \in \sigma} |a_2| = \frac{4}{3}$. Several authors have studied similar problems in this direction (see [1] [5], [8], [12], [13]).

We notice that the class σ is not empty. For example, the following functions are members of σ:

$$z, \quad \frac{z}{1 - z}, \quad -\log(1 - z), \quad \frac{1}{2} \log \frac{1 + z}{1 - z}.$$

However, the Koebe function is not a member of σ. Other examples of univalent functions that are not in the class σ are

$$z - \frac{z^2}{2}, \quad \frac{z}{1 - z^2}.$$

In the sequel we assume that φ is an analytic function with positive real part in the unit disk U, satisfying $\varphi(0) = 1$, $\varphi'(0) > 0$ and such that $\varphi(U)$ is symmetric with respect to the real axis. Assume also that:

$$\varphi(z) = 1 + B_1z + B_2z^2 + \ldots, \quad B_1 > 0. \tag{9}$$
Definition 2. A function \(f \in A \) is said to be in the class \(H_{\alpha,\beta}(\varphi) \), \(\alpha \in [0,1] \), \(\beta \geq 0 \), if \(f \in \sigma \) and satisfies the following conditions:

\[
(1 - \beta) \left[(1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right] + \beta \frac{zf'(z) + \alpha z^2 f''(z)}{(1 - \alpha)f(z) + \alpha zf'(z)} \leq \varphi(z),
\]

and

\[
(1 - \beta) \left[(1 - \alpha) \frac{wg'(w)}{g(w)} + \alpha \left(1 + \frac{wg''(w)}{g'(w)} \right) \right] + \beta \frac{wg'(w) + \alpha w^2 g''(w)}{(1 - \alpha)g(w) + \alpha wg'(w)} \leq \varphi(w),
\]

where \(g \) is the extension of \(f^{-1} \) to \(U \).

Theorem 3. If \(f \in H_{\alpha,\beta}(\varphi) \) is in \(A \) then

\[
|a_2| \leq \frac{|\tau|B_1\sqrt{B_1}}{\sqrt{|(1 + \alpha) + \alpha\beta(1 - \alpha)|B_1^2 - (B_2 - B_1)(1 + \alpha)^2|}}, \quad (10)
\]

and

\[
|a_3| \leq B_1 \left[\frac{1}{1 + \alpha} + \frac{\alpha\beta(1 - \alpha)}{2(1 + 2\alpha)(1 + \alpha)} \right] + \frac{|B_2 - B_1|}{1 + \alpha}. \quad (11)
\]

Proof. Let \(f \in H_{\alpha,\beta}(\varphi) \) and \(g = f^{-1} \). Then there exist two analytic functions \(u, v : U \to U \) with \(u(0) = v(0) = 0 \) such that:

\[
(1 - \beta) \left[(1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right] + \beta \frac{zf'(z) + \alpha z^2 f''(z)}{(1 - \alpha)f(z) + \alpha zf'(z)} = \varphi(u(z)) \quad \text{and}
\]

\[
(1 - \beta) \left[(1 - \alpha) \frac{wg'(w)}{g(w)} + \alpha \left(1 + \frac{wg''(w)}{g'(w)} \right) \right] + \beta \frac{wg'(w) + \alpha w^2 g''(w)}{(1 - \alpha)g(w) + \alpha wg'(w)} = \varphi(v(w)). \quad (12)
\]

Define the functions \(p \) and \(q \) by

\[
p(z) = \frac{1 + u(z)}{1 - u(z)} = 1 + p_1 z + p_2 z^2 + \ldots, \quad q(z) = \frac{1 + v(z)}{1 - v(z)} = 1 + q_1 z + q_2 z^2 + \ldots
\]

or equivalently,

\[
u(z) = \frac{p(z) - 1}{p(z) + 1} = \frac{1}{2} \left[p_1 z + \left(p_2 - \frac{p_1^2}{2} \right) z^2 + \ldots \right], \quad (13)
\]

and

\[
v(z) = \frac{q(z) - 1}{q(z) + 1} = \frac{1}{2} \left[q_1 z + \left(q_2 - \frac{q_1^2}{2} \right) z^2 + \ldots \right]. \quad (14)
\]
We observe that \(p, q \in \mathcal{P} \) and, in view of Lemma 2, we have that \(|p_n| \leq 2\) and \(|q_n| \leq 2\), for \(n \geq 1\).

Further, using (13) and (14) together with (9), it is evident that

\[
\varphi(u(z)) = 1 + \frac{1}{2} B_1 p_1 z + \left(\frac{1}{2} B_1 \left(p_2 - \frac{1}{2} p_1^2 \right) + \frac{1}{4} B_2 p_1^2 \right) z^2 + \ldots
\]

and

\[
\varphi(v(z)) = 1 + \frac{1}{2} B_1 q_1 z + \left(\frac{1}{2} B_1 \left(q_2 - \frac{1}{2} q_1^2 \right) + \frac{1}{4} B_2 q_1^2 \right) z^2 + \ldots.
\]

Therefore, in view of (12), (15) and (16) we have

\[
(1 - \beta) \left[(1 - \alpha) \frac{z f'(z)}{f(z)} + \alpha \left(1 + \frac{z f''(z)}{f'(z)} \right) \right] + \beta \frac{z f'(z) + \alpha z^2 f''(z)}{(1 - \alpha) f(z) + \alpha z f'(z)}
\]

\[= 1 + \frac{1}{2} B_1 p_1 z + \left(\frac{1}{2} B_1 \left(p_2 - \frac{1}{2} p_1^2 \right) + \frac{1}{4} B_2 p_1^2 \right) z^2 + \ldots,
\]

and

\[
(1 - \beta) \left[(1 - \alpha) \frac{w g'(w)}{g(w)} + \alpha \left(1 + \frac{w g''(w)}{g'(w)} \right) \right] + \beta \frac{w g'(w) + \alpha w^2 g''(w)}{(1 - \alpha) g(w) + \alpha w g'(w)}
\]

\[= 1 + \frac{1}{2} B_1 q_1 w + \left(\frac{1}{2} B_1 \left(q_2 - \frac{1}{2} q_1^2 \right) + \frac{1}{4} B_2 q_1^2 \right) w^2 + \ldots.
\]

Since \(f \in \sigma \) has the Taylor series expansion (1) and \(g = f^{-1} \) the series expansion (2), we have

\[
(1 - \beta) \left[(1 - \alpha) \frac{z f'(z)}{f(z)} + \alpha \left(1 + \frac{z f''(z)}{f'(z)} \right) \right] + \beta \frac{z f'(z) + \alpha z^2 f''(z)}{(1 - \alpha) f(z) + \alpha z f'(z)}
\]

\[= 1 + (1 + \alpha) a_2 z + \left[2(1 + 2\alpha)a_3 - (1 + 3\alpha - \alpha \beta + \alpha^2 \beta) a_2^2 \right] z^2 + \ldots,
\]

and

\[
(1 - \beta) \left[(1 - \alpha) \frac{w g'(w)}{g(w)} + \alpha \left(1 + \frac{w g''(w)}{g'(w)} \right) \right] + \beta \frac{w g'(w) + \alpha w^2 g''(w)}{(1 - \alpha) g(w) + \alpha w g'(w)}
\]

\[= 1 - (1 + \alpha) a_2 w - \left[2(1 + 2\alpha)a_3 - (1 + 3\alpha - \alpha \beta + \alpha^2 \beta)(a_3 - 2a_2^2) \right] w^2 + \ldots.
\]
Equating the coefficients in (17), (19) and (18), (20), we obtain

\[
\begin{cases}
(1 + \alpha)a_2 = \frac{1}{2}B_1p_1,
\end{cases}
\]

\[
2(1 + 2\alpha)a_3 - (1 + 3\alpha - \alpha\beta + \alpha^2\beta)a_2^2 = \frac{1}{2}B_1\left(p_2 - \frac{p_1^2}{2}\right) + \frac{1}{4}B_2p_1^2,
\]

\[-(1 + \alpha)a_2 = \frac{1}{2}B_1q_1,
\]

\[-2(1 + 2\alpha)(a_3 - 2a_2^2) - (1 + 3\alpha - \alpha\beta + \alpha^2\beta)a_2^2 = \frac{1}{2}B_1\left(q_2 - \frac{q_1^2}{2}\right) + \frac{1}{4}B_2q_1^2.
\]

From the first and the third equation of the system (21) it follows that

\[p_1 = -q_1,
\]

and

\[a_2^2 = \left(\frac{B_1p_1\tau}{4(1 + \gamma)}\right)^2.
\]

Now, (22), (23) and the next two equations of the system (21) lead to

\[a_2^2 = \frac{B_1^2(p_2 + q_2)}{4[(1 + \alpha) + \alpha\beta(1 - \alpha)]B_1^2 - 4(B_2 - B_1)(1 + \alpha)^2}.
\]

Thus, in view of Lemma 2, we obtain the desired estimation of \(|a_2|\).

From the third and the fourth equation of (21), we obtain

\[a_3 = \frac{1}{2}B_1p_2\frac{3 + 5\alpha + \alpha\beta(1 - \alpha)}{4(1 + 2\alpha)(1 + \alpha)} + \frac{1}{4}B_1^2(B_2 - B_1)\frac{1}{1 + \alpha},
\]

which yields to the estimate given by (11) and so the proof of Theorem 3 is completed.

\[\square\]

References

Andreea-Elena TUDOR,
Department of Mathematics,
Transilvania University of Brașov,
Str.Iuliu Maniu 50, 500091, Brasov, Romania.
Email: tudor_andreea_elena@yahoo.com

Dorina RĂDUCANU,
Department of Mathematics,
Transilvania University of Brașov,
Str.Iuliu Maniu 50, 500091, Brasov, Romania.
Email: draducanu@unitbv.ro