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1. Introduction

Three-dimensional (3D) textile structural composites (3DTSCs) 
are currently being widely used in structural engineering fields.
[1] As one typical type of 3DTSCs, the 3D Angle-interlock 
Woven Composites (3DAWCs) have attracted increasing 
interest during recent years due to their excellent mechanical 
properties. Angle interlock weaving is a technique in which 
yarns are placed at an angle to the thickness direction.[2, 3] 
Such weaving structures induce high damage tolerance and 
energy dissipation performance along the thickness direction 
for the 3DAWCs. Taking these significant advantages of the 
3DAWCs into account, the research works performed on 
the mechanical properties and structural optimization of the 
3DAWCs have become of critical importance.

To design the 3DAWCs meet the requirements of engineering 
applications, firstly their mechanical behavior and damage 
mechanism need to be analyzed. So far, the mechanical 
behaviors of the 3DAWCs have been investigated and analyzed 
by several researchers and their co-workers. Sheng et al.[4] 
proposed a 3D micromechanical modeling approach to predict 
the elastic constants of 3DAWC, good agreement was obtained 
between the predicted results and experimental results. Sun et 
al.[5, 6] investigated the compressive properties of the layer-to-
layer 3DAWC at quasi-static and high strain rate loading using 
the methods of Fourier transform and wavelet packet analysis 
of stress waves to evaluate the compressive failure modes at 

different strain rates. It revealed that the stress–strain curves of 
the 3DAWC were sensitive to strain rate. Lapeyronnie et al.[7] 
assessed the elastic behavior of the layer-to-layer 3DAWC by 
an asymptotic homogenization procedure on a periodic unit 
cell, in the framework of the Love–Kirchhoff plate theory. They 
developed a specific Python program using ABAQUS software 
package, allowing for parameterized geometrical modeling 
and mechanical analysis in a systematic and efficient way. The 
effective properties were finally validated by comparison with 
experimental tests. Dong et al.[8] established a finite element 
model of the layer-to-layer 3DAWC, which truly simulate the 
profile and tending towards of tows in fabric. The model was 
adopted to study the mechanical properties of the composites. 
And the influence of the arranged density of the warp and weft 
tows on the elastic moduli of this material were also analyzed. 
It showed that the models were found to correlate reasonably 
well with the experimental, predicted and measured results 
available in the literature. Tan et al.[9] used a laminate block 
modeling approach for through-the-thickness 3DAWC to 
develop one finite element analysis (FEA) model and two 
analytical models. These models were used to determine 
the mechanical properties and the coefficients of thermal 
expansion for the composites. A parametric study showed that 
there was a good agreement between these FEA and analytical 
models. Nehme et al.[10] proposed a new numerical FEA and 
analytical model to evaluate the mechanical behavior of the 
layer-to-layer 3DAWC. A good agreement between these two 
models was also obtained. Also, Hallal et al.[11] developed an 
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analytical model to estimate the longitudinal Young’s modulus 
of the layer-to-layer 3DAWC.

Considering the excellent de-lamination resistance performance 
because of the existence of undulated warp yarns along the 
thickness direction, the 3DAWCs have also been applied in 
high-velocity impact-proof protection. Several researchers 
have performed research works on ballistic penetration 
behavior of the 3DAWCs to explore the failure mechanisms 
under impact damage. Cui et al.[12] and Li et al.[13] employed 
a 3D finite element “Fiber inclination model”and unit-cell model 
to simulate the ballistic penetration process and summarize 
the energy absorption and damage mechanisms of a layer-
to-layer 3DAWC, respectively. Tang et al.[14] characterized 
the microstructure, impact response, and failure modes of the 
3DAWC with cellular structures under transverse impact with 
both experimental investigations and finite element unit-cell 
modeling. A good agreement was found between FEA results 
and experimental results.

As one of the main issues for composite materials in 
structural engineering applications, fatigue behavior 
analyses are widely employed because of the requirement 
of safe applications. Considering the excellent performance 
and wide range of potential applications for the 3DAWCs, 
understanding their fatigue behavior is of critical importance. 
As for the fatigue behavior of the 3DAWCs, Tsai et al.[15] 
conducted a comparative study on the fatigue properties and 
damage processes between the untouched three-layer and 
five-layer 3DAWC plates under tensile cyclic loading. The 
fatigue damage mechanisms primarily involved transverse 
cracks in the warp yarns, debonding between the warp 
and weft yarns, debonding extension and deflection into 
the matrix and weft yarn breakages. Gowayed et al.[16] 
developed a model that was established from a mathematical 
model to analyze the fatigue behavior and life of fiber/epoxy 
3DAWC;the obtained results were in good agreement with 
the experimental data. More recently, Jin et al.[17-19] studied 
the three-point bending fatigue behaviors of the layer-to-
layer 3DAWC. It was found that the integrated construction 
structure can resist the de-lamination of the 3DAWC under 
high-cycle fatigue loading. In addition, 3DAWC shows a 
better bending fatigue resistance performance compared 
with the 3D Orthogonal Woven Composites (3DOWC) at the 
same stress levels.

However, the damage mechanism of the 3DAWCs under 
tensile loading has not been properly analyzed;to design 
stronger and more effective 3DAWC structures, more 
active effects should be made. In this paper, the damage 
mechanism of one type of the layer-to-layer 3DAWCs 
subjected to quasi-static tension loading is reported. The 
tests were performed with Acoustic Emission (AE) monitoring 
technique. The Load-Extension curve, Load/AE events-
Time curves were obtained to characterize the mechanical 
behavior of the 3DAWC under quasi-static tensile loading. 
Moreover, the AE events occurred during the entire testing 
process and ultimate failure modes were illustrated to unveil 
the damage mechanism of the 3DAWC under quasi-static 
tension loading.

2. Experimental

2.1.Materials

Figure 1 is the sketch diagram of alayer-to-layer 3D Angle-
interlock Woven Fabric (3DAWF) construction. In this structure, 
the undulated warp yarns interlaced the non-crimp weft yarns 
to form a stable and integrated woven construction. All the 
warp yarns and weft yarns were glass fiber tows. Table 1 lists 
the specifications of the 3DAWF.

Figure 1. Layer-to-layer angle-interlock structure

Table 1. Specifications of the3DAWF

Yarns Fiber 
type

Linear 
density 

(Tex)

Density 
(ends/

cm)
layers

Warp glass 
fiber tows 480×2 11 5

Weft glass 
fiber tows 480×1 2 6

The vacuum assisted resin transfer molding (VARTM) technique 
was employed to manufacture the 3DAWC. The resin was 
AROPOLTM INF 80501-50 polyester resin provided by Ashland 
Composite Polymers China. The curing agent was AKZO® 
M-50. The proportion of resin and curing agent was 100:1.0 
by weight. The resin solution was first injected into the 3DAWF 
and then cured for 24 hours at a room temperature of 25°C 
followed by a post curing in an oven at 80°C for 4 hours. The 
3DAWC samples used for testing were cut with high pressure 
water jet along the longitudinal and transverse directions of the 
composite plate. The longitudinal direction of the samples was 
aligned with the warp yarns. In all the quasi-static tension tests, 
to avoiding the occurrence of stress concentration effects at the 
clamping regions, which may induce the irregular local damage, 
the dog-bone shaped testing specimens were manufactured 
and used. Thus, it ensures that tensile fracture failure occurs 
at the central part of the specimen. The size (length × width × 
thickness) of each 3DAWC sample was 12×1.87×0.4 cm. The 
fiber volume fraction of the 3DAWC was approximately 55%. 
The surface and cross-section of a sample are shown in Figure 
2.

2.2.Quasi-static tension tests

As shown in Figure 3, the quasi-static tension tests were 
conducted on an INSTRON 8501 system at the speed of 1 mm/
min. Moreover, in order to monitor the damage development 
of the composite sample during the entire testing process, 
an acoustic emission (AE) system (Physical Acoustics PCI-2) 
was employed. Two 300 kHz resonance transducers (Micro 
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30) were placed on the loading fixtures to determine when 
and where the damage events took place. The sensors were 
attached to model 2/4/6 preamps providing 40 dB of gain and 
band-pass filtering of 200–400 kHz. The location of the AE 
source in the composite specimen was determined using a 
linear location method. Only the AE events recorded between 
the sensors were used to analyze the results.

3. Results and discussion

3.1.Load-extension and Load/AE events-time curves

In order to determine the dominant failure mechanisms during 
the process of tensile loading, the load-extension curve, and 
load/number of AE events of the 3DAWC samples during the 
quasi-static tensile test are plotted together as a function of 
time and presented in Figures4 and 5, respectively.

It can be significantly found that both curves can be divided 
into 3 regions, that is, Regions I, II and III. For Region I, there 
is a sharp rise of both load and number of AE events during a 
short period of testing time between 0 and 25th second. For 
Region II, between the 25th and 55th second, a continuous tiny 

rise for the load, and firstly a decrease and then an increase for 
the number of AE events exist simultaneously. As for Region III, 
from 55th second to the ultimate failure, there is a continuous 
rise for the load and a continuous ladder-like increase and 
decrease, but generally shows a down-ward trend for the 
number of AE events.

3.2.Failure morphologies

The ultimate failure morphologies of the 3DAWC sample under 
quasi-static tensile loading are presented in Figure 6, which 
shows the typical damage modes of the 3DAWC at both views 
of the surface. It can be found that the resin cracking, yarn 
breakages and pulling out from the matrix and breakages of 
undulated warp yarns are the main damage mode. In particular, 
the resin cracks and the yarn breakages can be easily found 
on the surface of the sample.This indicates that the undulated 
warp yarns carried majority of the loads during the static tensile 
loading. The debonding was relatively easier to occur at the 
stress concentration regions of warp yarn-resin-weft yarn 
interface, where the undulated warp yarns hold the maximum 
amplitude of undulation. Moreover, the damage is initiated from 
the edge part of the sample and then propagated into the inner 
structure.

Figure 2. 3DAWC testing sample; (a) Surface, (b) Cross-section

Figure 3.Testing setup

Figure 4. Load-extension curve

Figure 5. Load/AE events-time curves
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accordance with the results of the AE events’ detection for 
characterizing the progressive damage of the composite. In 
addition, the undulated warp yarns, which ran throughthe 
thickness direction of the 3DAWC, plays an important role in 
carrying the loads.
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