Corrigendum

Sangeeta Mehta, Rakhee Chhetra, Radhika Srinivasan, Suresh C. Sharma, Digambar Behera and Sujata Ghosh*

Corrigendum to: Potential importance of *Maackia amurensis* agglutinin in non-small cell lung cancer

DOI 10.1515/hsz-2015-0237

The concentration of lectins (*Maackia amurensis* agglutinin & *Sambucus nigra* agglutinin) have been erroneously specified in units of μM whereas it should be nM. The corrected units in text and figure appears below.

The apoptotic index of NCI-H460 cells (Figure 3A) and NCI-H520 cells (Figure 3B) was at the maximum at a 4 nM dose of *Maackia amurensis* agglutinin, which was down-regulated at higher doses.

The percentage of apoptotic cells was significantly higher (p<0.01) in cells [47±5.1% for NCI-H460 and 54±5.2% for NCI-H520] cultured for 24 h in the presence of 4 nM lectin as compared to the respective control cells.

When both the cell lines were incubated for 12 h with the lectin (4 nM), the extent of apoptosis was found to be comparable to that of the respective control, while 24 h and 36 h incubation increased the apoptotic index to ~2.5-fold and ~4-fold, respectively. As 24 h of incubation of both the NSCLC cell lines with the 4 nM dose of *Maackia amurensis* agglutinin was sufficient for inducing an appreciable extent of apoptosis, this dose of the lectin for 24 h was used for the induction of apoptosis in both the cell lines (5×10⁴/500 μl) in the subsequent experiments. The apoptotic index of normal lung fibroblast cells (WI-38) cultured for 24 h in presence of 4 nM dose of *Maackia amurensis* agglutinin was found to be comparable to that of the untreated cells.

We observed that pre-incubation of the lectin (4 nM) with GM2 (0.78 ng/ml) resulted in a decrease in the apoptotic index by 42% and 39% in NCI-H460 cells and NCI-H520 cells, respectively. The apoptotic index of NCI-H460 and NCI-H520 cells was found to be reduced by 45% and 46% respectively, when the cells were treated with the lectin (4 nM) pre-incubated with IgG₃₃₃₄ (Figure 4B).

Figure 4 (A) Apoptosis induced by *Maackia amurensis* agglutinin (4 nM) in NCI-H460 cells and NCI-H520 cells at various time periods.
Briefly, the NSCLC cells (5×10⁴/500 μl) were cultured in serum-free media in the absence and presence of different doses (0.8–8 nM) of Maackia amurensis agglutinin for 24 h.

Figure 3: Apoptosis induced by Maackia amurensis agglutinin (■) and Sambucus nigra agglutinin (□) in NCI-H460 cells, (A) and NCI-H520 cells, (B) at 24 h. The apoptotic index was evaluated by CDD-ELISA. ***p<0.01 vs. cells treated with 0.8 nm of Maackia amurensis agglutinin; **p<0.01 vs. cells treated with 4 nm of Sambucus nigra agglutinin; one way ANOVA Post Hoc Dunnett test. Representative histograms of FACS analysis of Maackia amurensis agglutinin treated (C) NCI-H460 cells and (D) NCI-H520 as evaluated by APO-Direct Kit. Cells only (a, a''), cells cultured in presence of 0.8 nm lectin (b, b''), 1.6 nm lectin (c, c'') and 4 nm lectin (d, d''); Inset: Graphical representation of the lectin-induced apoptosis in both the cell lines. **p<0.01 vs. untreated cells. One way ANOVA Post Hoc Dunnett test. Each bar represents mean±SD of values obtained from three independent experiments performed in duplicate.