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Abstract — In this paper we present a general derivation of kinetic models for
traffic flows including different kinds of interaction rules. We show that most kinetic
previously derived models can be cast in the actual formulation. The development
of Monte–Carlo methods for direct simulation of kinetic models is considered as an
initial step towards realistic and efficient computations of traffic phenomena. Monte–
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are computed and compared to the previously obtained solutions of the stationary
equation.
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1. Introduction

We present a general framework for kinetic traffic flow models and a new Monte–Carlo
method for computing stationary solutions. The kinetic or Boltzmann-like traffic flow models
have been the subject of several discussions by different authors, e.g., [2,4–8,12–14]. We do
not intend to restate the complete discussion. Nowadays kinetic models are accepted as an
intermediate step between macroscopic and microscopic models [6].

The Monte–Carlo methods are widely used to simulate the dynamics of complex systems.
They have many advantages, of which the simplicity and reduced computational cost make
them very attractive for realistic simulations. In the kinetic theory of rarefied gases, for
example, they have been widely used to simulate stationary flows (see [1, 9, 10] for a recent
review on such methods). In traffic flows, however, such methods have not been used, at
least in connection with partial differential equations. We refer to [15] for direct stochastic
simulations starting from microscopic probabilistic considerations.

In this paper we start from the general microscopic interaction rules to derive the cor-
responding kinetic equations. Furthermore, we introduce a numerical scheme based on the
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156 M. Herty, A. Klar, and L. Pareschi

Monte–Carlo methods to compute the stationary solution in the homogeneous case. The
derivation of kinetic equations by considering single driver interactions was also done in [6,7]
for special interaction rules. We present here a more general approach including also more
sophisticated driver dynamics as presented for example in [3]. Numerical results for the dif-
ferent stationary solution are given. The latter are obtained by applying a suitable stochastic
particle method to the traffic flow models. More details on the numerics can also be found
in [10,11]. This homogenous study represents a preliminary step towards the use of Monte–
Carlo methods in the simulation of traffic flows problems.

2. Basic equations

Below we consider only the single lane models. The concepts can easily be extended to
multilane models. By f(x, t, v) we denote the density of cars that at time t are at location x
and are driving with velocity v. Here, x ∈ R denotes the location on the highway; we assume
v ∈ [0, vmax], where vmax is the maximal allowed speed. We can normalize vmax to vmax = 1.

We define the following macroscopic quantities: ρ(x, t) =
∫ 1

0
f(x, t, v)dv is the car density

at location x and time t. The density may vary in [0, ρmax] where we normalize ρmax = 1.

The macroscopic flux is given by j(t, x) =
∫ 1

0
vf(x, t, v)dv.

The general kinetic traffic flow model is given by the following evolution equation for the
distribution function f = f(x, t, v)

∂tf + v∂xf = G(f, f 2, x, x + HG, t, v)− L(f, f 2, x, x + HL, t, v). (1)

In this notation the change in the distribution function f is given by gain terms denoted by
G and loss terms (L). Usually, gain and loss are due to acceleration and braking scenarios,
respectively. The vehicular traffic flow models under consideration deal with the interaction
of only two cars. Hence, we obtain a dependence of the source term on f 2(x, t,H, v, v′).
This term describes the distribution function of a pair. The source term may also include
non-local terms x + HL,G. These terms are due to drivers who act according to the car in
front of them (having a positive distance HL, HG)

To simplify the equation, we assume the following approximation

f 2 ≈ qf(x, v)f(x + H, v′) (2)

with a known function q. This is similar to [6]. We consider the space-homogenous situa-
tion for various driver interactions. The different possible interaction rules are taken from
vehicular flow models like those given in [2–4,6].

2.1. Driver interactions

The general kinetic equation (1) can be derived by describing the microscopic interaction
rules. Common to all models are the following three different behaviors of vehicular car
drivers.

We consider two cars with velocities v and w. The possible interactions are acceleration,
braking and reaching a desired velocity. They are given as follows.

1. Acceleration. If v < w, then the car with velocity v will accelerate to v+ according to
the following law:

v+ = v + a(v, w, ξ). (3)
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The function a may also depend on a random variable ξ. This takes into account
the fact that the acceleration process is not deterministic, but depends on the actual
driver.

2. Braking. If v > w, then the car with velocity v will brake to prevent an accident and
reach a new velocity v′:

v+ = v − b(v, w, ξ). (4)

3. Independent of the velocity of other cars, a driver may want to reach his desired
velocity. This can be modelled by introducing an additional interaction rule like

v+ = d(v, ξ). (5)

The models of Klar et al. and Helbing are included in the above framework. We give some
examples. Let ξ denote a stochastic variable uniformly distributed in [0, 1].

Example 1. Model of Illner, Klar et al. [4].

a(v, w, ξ) = (1− ξ)(vmax − v), (6)

where vmax is the maximal allowed velocity of the cars.

b(v, w, ξ) = ξv, (7)

d(v, ξ) = 0. (8)

Example 2. Simplified model of Klar et al. [2].

a(v, w, ξ) = (1− ξ)(w − v), (9)

b(v, w, ξ) = ξ(v − w), (10)

d(v, ξ) = ξvmax. (11)

Example 3. Helbing-like [3] interaction rule. Following [3], the complete microscopic
dynamics for a single car α at time t with position xα(t) and velocity vα(t) are

x′α(t) = vα(t),

v′α(t) = ã

(
1−

(
vα

v0

)δ

−
(s∗

s

)2
)

,

s∗ = s0 + max

(
vαT +

vα(vα − vα−1)

2
√

ãb̃
, 0

)
.

(12)

Here, s = [xα−1(t)−xα(t)− lα] is the gap between the vehicle α and the car α−1, moving in
front. Further, ã, δ and b̃ are the acceleration and braking parameters and vαT is the safety
distance, s0 is the minimum distance to a standing vehicle.

We rewrite the different acceleration and braking factors in terms of a, b and d given by
(3,4) and (5), respectively. These equations can be seen as simple discretizations of (12).

Note that model (12) is deterministic and, therefore, there is no dependence on the
stochastic variable.
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The acceleration on a clear road is given by ã(1−(v/v0)
δ), where v0 is the desired velocity.

The exponent δ is in the range of [1, . . . , 5] depending on the acceleration behavior of the
drivers. Hence,

d(v) = v + ã
(
1− (v/v0)

δ
)
. (13)

The braking term is given by −ã(s∗/sα)2. Since we consider a spatially homogeneous
situation, we obtain sα = lα = const and

b(v, w) = ã (s∗/sα)2 , s∗ = (s0 + vT ) + v(v − w)/
√

2ãb̃. (14)

Except for the term d, there is no additional acceleration term

a(v, w, ξ) = 0. (15)

For further explanation on the choice of the constants ã and b̃, refer to [3].

Several other kinetic traffic flow models can be found, for example, in [2, 6] and the
references therein.

2.2. Derivation of kinetic equations

Combining the driver interactions with (1), we obtain a general traffic model. We will give
some examples for the final equations.

From the above driver interaction rules we can derive the general form (1) with the
corresponding gain and loss terms. The evolution equation in the space-homogeneous case
is given by

∂tf = G(f, t, v)− L(f, t, v). (16)

The subscript A,B denotes the type of interaction corresponding to the gain or loss at the
point (t, v). We have

G(f, v) = GA(f, v) + GB(f, v) + GD(f, v), (17)

where NA,B,D are sets of points ξ depending on v and w :

GA(f, v) =

vmax∫

0

∫

NA(v,w)

| det J |βA
(v′,w)7→(v,w)f(v′)f(w)dξdw,

NA(v, w) := {ξ : 0 6 ξ 6 1, v′ < w, 0 6 v′ 6 vmax, v = v′ + a(v′, w, ξ)},

GB(f, v) =

vmax∫

0

∫

NB(v,w)

| det J |βB
(v′,w)7→(v,w)f(v′)f(w)dξdw,

NB(v, w) := {ξ : 0 6 ξ 6 1, v′ > w, 0 6 v′ 6 vmax, v = v′ − b(v′, w, ξ)},
GD(f, v) =

∫

ND(v)

| det J |βD
v′ 7→vf(v′)dξ,

ND(v) := {ξ : 0 6 ξ 6 1, 0 6 v′ 6 vmax, v = d(v′, ξ)}.
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Here, J is the Jacobian of the corresponding transformation (v, w) 7→ (v′, w) s.t. v =
v′ + a(ξ, v′, w), v = v′ − b(ξ, v′, w) and v = d(v′, ξ) respectively. Note that in all the above
formulas v′ is given implicitly and v, w and ξ are the parameters. For given functions a, b
and d the above formulas are simplified and the terms can be expressed explicitly in terms
of v′ and w. We refer to the examples in the next subsection for further details.

The loss terms L(f, t, v) = LA + LB + LD are given by

LA(f, v) =

∫

v<w

βA
(v,w) 7→(v′,w)f(v)f(w)dw,

LB(f, v) =

∫

v>w

βB
(v,w) 7→(v′,w)f(v)f(w)dw,

LD(f, v) = f(v)

∫
βD

v 7→v′dv′ = f(v).

The functions βA, βB and βD consist of the correlation function q introduced above and
further modelling parameters describing the strength of the microscopic interaction.

We have the following remark on the inhomgenous situation. Inhomogeneous traffic
equations can be derived in the usual way, see, for example, the publications cited in the
introduction, especially [5, 6].

2.3. Examples

We derive the Illner—Klar model, the simplified Klar model and the Helbing model from the
above microscopic setting. We give the numerical results on these three models in Section 4.
We assume single lane models and the maximum velocity vmax = 1.

2.3.1. Example 1: the model of Illner, Klar et al. The acceleration and braking
behavior is given by

a(v, w, ξ) = (1− ξ)(1− v), b(v, w, ξ) = ξv,

where 0 6 ξ 6 1. Further,

βA(v′, w) = |v′ − w|qA(ρ)/ρ, βB(v′, w) = |v′ − w|qB(ρ)/ρ,

where qA and qB are correlation functions depending on the macroscopic quantities only.
Consider the case of acceleration first. The transformation F = (F1, F2) : (v, w) 7→ (v′, w)

is given by v = v′ + a(v′, w, ξ) and w = w, i.e.,

F (v, w; ξ) =

[v−1+ξ
ξ

w

]
.

Further, J = ∇F with | det J | = 1
ξ

and ∂ξF1(v, w; ξ) = (1 − v′)| det J |. Using v = v′ +
a(v′, w, ξ), we have

GA(f, v) =

1∫

0

∫

N(v,w)

| det J |βA(v′, w)f(v′)f(w)dξdw,
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where the set N(v, w) is given by N(v, w) = {ξ : 0 6 ξ 6 1, v′ < w, 0 6 v′ 6 1, v = v′ +
a(v′, w, ξ)}. Next, we transform the coordinates, i.e., we apply the transformation formula to
GA with ξ 7→ v′ and v′ = F1(v, w, ξ). Let M(v, w) = {v′ : 0 6 v′ 6 1, v′ < w, 0 6 v−v′

1−v′ 6 1},
then we obtain

GA(f, v) =

1∫

0

∫

M(v,w)

βA(v′, w)
1

1− v′
f(v′)f(w)dv′dw.

Reformulating the conditions describing the set M(v, w) and inserting βA, we get

GA(f, v) =
1

ρ

1∫

0

∫

v′<w,06v′61

qA(ρ)|v′ − w|f(v′)f(w)
1

1− v′
χ[v′,1](v)dv′dw.

This is the considered gain term due to the acceleration as in [4].

Next, we consider the gain term due to the braking. The transformation F is given by

F (v, w, ξ) =

[
v/(1− ξ)

w

]

and | det J | = 1/(1− ξ) and ∂ξF1(v, w, ξ) = | det J |v′. Define N(v, w) := {ξ : 0 6 v′ 6 1, 0 6
ξ 6 1, v′ > w, v = v′ − b(v′, w, ξ)}, then for v′ = v/(1− ξ)

GB(f, v) =

1∫

0

∫

N(v,w)

∂ξF1(v, w; ξ)/(1− v′)βB(v′, w)f(v′)f(w)dξdw.

Let M(v, w) = {v′ : 0 6 v′ 6 1, 0 6 v/v′ 6 1, v′ > w} = {v′ : 0 6 v′ 6 1, 0 6 v 6 v′, v′ > w}
and apply the transformation formula for ξ 7→ v′ to obtain

GB(f, v) =

1∫

0

∫

M(v,w)

1

v′
βB(v′, w)f(v′)f(w)dv′dw

=

1∫

0

∫

v′>w,06v′61

1

v′
χ[0,v′](v)βB(v′, w)f(v′)f(w)dv′dw.

After inserting the definition of βB we obtain the gain term due to the braking as in [4].

The derivation of the loss terms is easy and we skip the details.

Assume ∀ρ : qA(ρ) 6= 0. We introduce

k(ρ) :=
qB(ρ)

qA(ρ)
, c(ρ) = qA(ρ)/ρ

Unauthenticated
Download Date | 5/25/19 5:15 AM



Kinetic models and Monte–Carlo methods 161

and summarize the above considerations:

ft(v, t) = c(ρ)
(
k(ρ)

1∫

0

∫

v′>w

|v′ − w|f(v′, t)f(w, t)
1

v′
χ[0,v′](v)dv′dw

+

1∫

0

∫

v′<w

|v′ − w|f(v′, t)f(w, t)
1

1− v′
χ[v′,1](v)dv′dw

− k(ρ)

∫

v>w

|w − v|f(w, t)f(v, t)dw

−
∫

v<w

|w − v|f(w, t)f(v, t)dw
)

=: c
(
kG̃B + G̃A − kL̃B − L̃A

)
.

Note that in equation (18) the operators G̃A,B and L̃A,B have the same kernel β̃(v, w) =
|v − w|.

2.3.2. Example 2: the simplified model of Klar et al. We have

a(v, w, ξ) = (1− ξ)(w − v), b(v, w, ξ) = ξ(v − w)

and again

βA(v′, w) = |v′ − w|qA(ρ)/ρ, βB(v′, w) = |v′ − w|qB(ρ)/ρ, βD = 1.

Consider the gain term due to the acceleration. As before, we derive the transformation F
from v = v′ + a(v, w, ξ):

F (v, w, ξ) =

[v−w(1−ξ)
ξ

w

]

and | det J | = 1/ξ and ∂ξF1(v, w, ξ) = (w − v′) det J. Then a similar calculation shows

GA(f, v) =

1∫

0

∫

N(v,w)

| det J |βA(v′, w)f(v′)f(w)dξdw

=
1

ρ

1∫

0

∫

06v′61,v′<w

|v′ − w|qA(ρ)f(v′)f(w)
1

w − v′
χ[v′,w](v)dv′dw,

where N(v, w) = {ξ : 0 6 ξ 6 1, v′ < w, 0 6 v′ 6 1, v = v′ + a(v′, w, ξ)}. Consider the gain
due to the braking. It is sufficient to notice that

F (v, w, ξ) =

[
v−w
1−ξ

+ w

w

]

and that det J = 1/(1− ξ). Then we follow a similar procedure as in the previous example.
Finally, we consider the gain term due to the free acceleration. Since the maximal velocity
is equal to one, we obtain

d(v, ξ) = ξ = v′
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and v+ = d(v, ξ) as a microscopic interaction law. To compute the gain term GD(f, v), we
consider the transformation F given by v′ = d(v, ξ)

F (v, ξ) =
[
ξ
]
.

In this case | det J | = 1 and we obtain

GD(f, v) =

∫

{ξ:06ξ61,v=ξ=v′}

| det J |βD(v′)f(v′)dξ =

1∫

0

f(v′)dv′.

This coincides with the gain term due to the free acceleration in [2]. The equivalence of the
loss terms follows immediately. We omit the details.

Using the notation k(ρ) = qB(ρ)/qA(ρ), c(ρ) = qA(ρ)/ρ, we obtain the full equation:

ft(v, t) = c(ρ)
(
k(ρ)

1∫

0

∫

v′>w

|v′ − w|f(v′, t)f(w, t)
1

v′ − w
χ[w,v′](v)dv′dw

+

1∫

0

∫

v′<w

|v′ − w|f(v′, t)f(w, t)
1

w − v′
χ[v′,w](v)dv′dw

− k(ρ)

∫

v>w

|w − v|f(w, t)f(v, t)dw

−
∫

v<w

|w − v|f(w, t)f(v, t)dw
)

=: c
(
kG̃B + G̃A − kL̃B − L̃A + 1/cG̃S − 1/cL̃S

)
.

(18)

Again, the kernels of G̃A,B and L̃A,B coincide.

2.3.3. Example 3: The Helbing-like model In these models the acceleration term
a = 0 and b, d do not depend on the random variable ξ. Further, in all cases the macroscopic
strength of the interaction is equal to one, i.e., βB = βD = 1.

We obtain for the gain term due to the free acceleration GD(f, v) the transformation
F (v) = v′. Here v′ is given implicitly by v = v′ + ã(1− (v′/v0)

δ). Further,

GD(f, v) = | det J |f(v′)

1∫

0

1dξ.

Now consider the braking term given by (14). We obtain GB(f, v) as

GB(f, v) =

∫

v′>w

| det J |f(v′)f(w)dw

1∫

0

1dξ,

where F (v, w) = (v′, w) and v′ is defined implicity by the formula

v = v′ − ã (s∗/sα)2 and s∗ := (s0 + v′T ) + v′(v′ − w)/
√

2ãb̃.
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Again the derivation of the loss terms is similar and omitted. Finally,

ft(v, t) = G̃D − L̃D + G̃B − L̃B. (19)

Starting from the general form (18) (which includes (18) and (19)), we derive a Monte–
Carlo algorithm to compute stationary solutions in the next section.

3. Monte–Carlo algorithm for stationary solutions

In order to simplify the description of the method and the notations we make the following
assumptions on βA and βB

βA(v, w) =

{
β(v, w), v < w,

0, otherwise,
βB(v, w) =

{
kβ(v, w), w < v,

0, otherwise,
(20)

where k is a function depending only on macroscopic quantities. The factor k is a weighting
parameter that can control the relation between the acceleration and braking forces. The
assumption is satisfied by all models of Klar et al. [6] and also by the Illner, Klar model [4].

We start with the general time-dependent equation

ft = kGB + GA − kLB − LA + GD − LD (21)

where now the value k has been emphasized so that GA,B and LA,B are defined through the
same kernel β and all integrations are performed on the whole velocity range.

Note that in (21) the loss operator due to the free flow is given by

LD = f(v). (22)

First, we split the process into acceleration and braking due to the car-car interaction and
single car interactions

ft = kGB + GA − kLB − LA, (23)

ft = GD − LD. (24)

In order to develop a Monte–Carlo algorithm, we replace the gain operators by

GA =

∫ ∫
βA(v′, w)f(v′)f(w)d(v′, w)

=

∫ ∫
min{Σ, βA(v′, w)}f(v′)f(w)d(v′, w),

(25)

and similarly the loss operators by

LA = f(v)

∫
βA(v, w)f(w)dw

= f(v)Σρ− f(v)

∫ (
Σ−min{Σ, βA(v′, w)}) f(w)dw

= Σρ(f(v)− L̃A),

(26)

where Σ > 0 is a suitable constant usually referred to as dummy cross section in rarefied gas
simulations.
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The same reformulations are carried out also for the braking terms GB and LB. Note
that at the level of particles these identities are trivial for a suitable choice of Σ. In fact,
due to the finite number of car-particles we can simply define Σ = maxi,j β(vi, vj). In the
continuous case, the boundedness of the cross section follows rather naturally in traffic flows
thanks to the finite maximum velocity that a car can attain.

If we apply the explicit Euler method to (23) we obtain

fn+1 = fn(1− µ∆t) + µ∆t

(
k

k + 1
(G̃B + L̃B) +

1

k + 1
(G̃A + L̃A)

)
, (27)

where µ = Σρ(k + 1) and ˜GA,B = GA,B/(Σρ).
The probabilistic interpretation for ∆t < 1/µ is as follows.

• With probability (1− µ∆t) a car does not change its speed v.

• With probability µ∆t a car undergoes a possible change in its speed v.

– With probability k/(k + 1) a car undergoes a possible breaking scenario.

∗ Given a second car with velocity w breaking occurs if v > w with the relative
probability β(v, w)/Σ.

– With probability 1/(k + 1) a car undergoes a possible acceleration scenario.

∗ Given a second car with velocity w acceleration occurs if v < w with the
relative probability β(v, w)/Σ.

Next, if we apply the explicit Euler method to (24) we have

fn+1 = fn(1−∆t) + ∆tGD. (28)

Thus, for ∆t < 1 with probability ∆t a car changes its velocity towards the desired one.
The corresponding Monte–Carlo algorithm for solving (21) is as follows

ALGORITHM

1. Sample N particles from the initial distribution f0(v)

2. Choose ∆t sufficiently small

3. Loop until stationary state is reached

(a) Treatment of the gain and loss due to car-car interactions.

Compute the number of particles N1 = (1−∆tµ) which do not interact. Select randomly
Nc = N −N1 cars which may interact.

Choose Nc/2 pairs of particles described by their velocities (vi, vj). For each pair
let ξ1,2,3 ∈ [0, 1] be uniformly distributed random variables. Calculate Σ. Calculate
min{Σ, β(vi, vj)} := Σij . Update the velocities according to the following rule.

i. Possible braking scenario.
If ξ1 6 k

k+1 and if vi > vj and if ξ2Σ < Σij update by

v′i = vi − b(vi, vj , ξ3), v′j = vj . (29)
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ii. Possible acceleration scenario.
If ξ1 > 1

k+1 and if vi < vj and if ξ2Σ < Σij update by

v′i = vi + a(vi, vj , ξ3), v′j = vj . (30)

(b) Treatment of the gain and loss due to the free flow interaction.

Compute the number of particles N1 = (1 − ∆t)N which do not interact. Choose
Nc = N − N1 particles which will change their velocity. Each of the Nc particles
changes its velocity v according to the rule implied by GD, i.e.,

v′ = d(v, ξ). (31)

4. Numerical results

We used the Monte–Carlo scheme introduced in the previous section to compute stationary
solutions for different models. The computation is performed by using 20’000 particles. The
plots are generated with 200 points of reconstruction for each curve.

4.1. Example 1

The first example is the model of Illner, Klar et al. [4]. The driver interactions are given by

a(v, w, ξ) = (1− ξ)(vmax − v), b(v, w, ξ) = ξv, d(v, ξ) = 0, (32)

where vmax is normalized to 1. The kernels of the gain and loss terms are

βA = |v − w|/ρ, βB = k|v − w|/ρ, βD = 0, (33)

where we assume k > 0 to be constant. The relation between the acceleration and braking
forces is expressed by k. We compute the stationary solutions to the model (18) for different
choices of k. The stationary solutions are given in Fig. 1. The results coincide with the
considerations in [4]. Especially, we observe that the solution is symmetric with a unique
maximum. The same solutions are given in Fig. 2 in a log-log plot. We observe that for all
k and for v → 0 the sationary solutions have a powerlaw decay.

4.2. Example 2

The second example is the Klar and Wegener model [2]. Again we choose βA,B = |v − w|/ρ
and k = 1. The driver interactions are given by

a(v, w, ξ) = (1− ξ)(w − v), b(v, w, ξ) = ξ(w − v). (34)

We compute the stationary solution for the case GD = 0, i.e., d(v, ξ) = 0 and for d(v, ξ) =
ξvmax. The results are given in Fig. 3.

4.3. Example 3

The last example is the “intelligent driver model” proposed by Helbing et al. We set βA,B,C =
1 and k = 1. The driver interactions are as in case 4 in Section 2.1. The parameters for the
simulation are taken from [3]:

ã = 0.6, b̃ = 0.9 and T = 1.5.
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We assume the desired velocity of the cars to be v0 = 0.5. We present stationary solutions
for different values of δ. As pointed out in [3], δ controls the acceleration behaviour of the
drivers towards their desired velocity. It varies between the constant acceleration (δ → ∞)
and the exponential acceleration behaviour (δ = 1). The effect of varying δ on the stationary
solutions is given in Fig. 4.
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Figure 1. Equilibrium solutions to the Illner, Klar et al. model for varying k
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Figure 2. Equilibrium solutions to the Illner, Klar et al. model for varying k in the log-log plot
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Figure 3. Equilibrium solutions to the simplified model of Klar, et al. with and without the source term
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Figure 4. Equilibrium solutions to Helbing-like models for different choices of δ
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5. Conclusions

• A Monte–Carlo code for homogeneous kinetic traffic flow equations has been developed.
A large class of different interaction laws can be treated numerically in a uniform way.

• Various existing kinetic traffic flow models have been reformulated and included in the
general setting to allow the application of the new Monte–Carlo algorithm.

• Further numerical comparisons with discrete ordinate methods, i.e., deterministic schemes
for the traffic flow models will be investigated in a forthcoming paper.

• Inhomogeneous situations can be treated as well using the Monte–Carlo methods, as,
for example, for the Enskog equation in rarefied gas dynamics. Further numerical
studies and comparison of computation times to the already existing deterministic
codes will be considered in a future work.
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