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1 Introduction

Let g be an even-dimensional real nilpotent Lie algebra. A complex structure on g is an endomorphism J: g —
g satisfying J* = —Id and the integrability condition given by the vanishing of the Nijenhuis tensor, i.e.

Ny(X,Y) = [X, Y] +JJX, Y] +][X,]JY] - [JX,]Y] =0, 6y

for all X, Y € g. The classification of nilpotent Lie algebras endowed with such structures has interesting
geometrical applications; for instance, it allows to construct complex nilmanifolds and study their geometric
properties. Let us recall that a nilmanifold is a compact quotient I"\G of a connected, simply connected,
nilpotent Lie group G by a lattice I" of maximal rank in G. If the Lie algebra g of G has a complex structure J,
then a compact complex manifold X = (I"\G, J) is defined in a natural way.

The problem of determining which nilpotent Lie algebras admit a complex structure is completely
solved only up to dimension 6. In real dimension 4 there are two nilpotent Lie algebras with a complex
structure, namely, the abelian Lie algebra and the Lie algebra underlying the Kodaira-Thurston manifold. The
classification of 6-dimensional nilpotent Lie algebras having a complex structure was achieved by Salamon
in [25], and there are precisely 18 isomorphism classes. In higher dimensions only partial results are known
(see [18] and the references therein). In particular, note that there is no classification of real nilpotent Lie
algebras of dimension 8.

In [5, 6] Dotti and Fino study the 8-dimensional nilpotent Lie algebras g that admit a hypercomplex
structure, i.e. a pair of anticommuting complex structures {J;}i-1,,. They prove that if g admits such a

*Corresponding Author: Adela Latorre: Centro Universitario de la Defensa - LU.M.A., Academia General Militar, Crta. de
Huesca s/n. 50090 Zaragoza, Spain, E-mail: adela@unizar.es

Luis Ugarte: Departamento de Matematicas - .LU.M.A., Universidad de Zaragoza, Campus Plaza San Francisco, 50009 Zaragoza,
Spain, E-mail: ugarte@unizar.es

Raquel Villacampa: Centro Universitario de la Defensa - .U.M.A., Academia General Militar, Crta. de Huesca s/n. 50090
Zaragoza, Spain, E-mail: raquelvg@unizar.es

3 Open Access. © 2018 Latorre et al., published by De Gruyter. [l This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 License. Unauthenticated

Download Date | 11/14/18 4:51 PM


https://doi.org/10.1515/coma-2018-0004

90 — A.lLatorreetal. DE GRUYTER

structure, then g must be 2-step nilpotent and have first Betti number b1(g) > 4. They also find an explicit
description of the 8-dimensional nilpotent Lie algebras admitting a hypercomplex structure in terms of
families which depend on several real parameters. However, it seems to be unclear whether these families
contain an infinite number of pairwise non-isomorphic Lie algebras or not. Motivated by this fact, we address
the following more general problem:

Question 1.1. Do there exist infinite non-isomorphic nilpotent Lie algebras in dimension 8 admitting complex
structures?

In this paper we provide an affirmative answer to this question. In addition, we show that there are infinitely
many real homotopy types of 8-dimensional nilmanifolds admitting a complex structure. Moreover, the
nilmanifolds that we construct can be endowed with both generalized Gauduchon and balanced Hermitian
metrics. It should be noted that our results are based on the theory of strongly non-nilpotent complex
structures developed in [18].

The paper is structured as follows. In Section 2 we review the main results on complex structures found
in [18]. It turns out that the essentially new complex structures on nilpotent Lie algebras that arise in each
even real dimension are those of strongly non-nilpotent type. A complex structure J on a nilpotent Lie algebra
g is said to be strongly non-nilpotent (SnN for short) if the center of g does not contain any non-trivial J-
invariant ideal. In [18, Theorem 4.1] a structure result is obtained for the 8-dimensional nilpotent Lie algebras
admitting an SnN complex structure in terms of the dimensions of their ascending central series. Furthermore,
a complete description of the SnN complex geometry is given (see [18, Propositions 4.12, 4.13, and 4.14]).

We make use of [18, Proposition 4.12] to answer Question 1.1. Such result describes the generic complex
equations of any SnN complex structure on 8-dimensional nilpotent Lie algebras g with ascending central
series {gy }x of dimensions (1, 3, 8), (1, 3,5, 8), (1, 3,6, 8), or (1, 3, 5, 6, 8) (see Proposition 2.5). In Sec-
tion 3 we present a specific choice of complex parameters that allows us to construct a family g4, a € [0, o),
of pairwise non-isomorphic 8-dimensional nilpotent Lie algebras endowed with complex structures (see
Theorem 3.2). Note that the ascending central series of each g, is of type (1, 3, 5, 8), thus g, is 4-step nilpotent
and has first Betti number b1 (gq) = 3.

In Section 4 we consider the family g, with rational values of the parameter a in order to show that in eight
dimensions there are infinitely many real homotopy types of nilmanifolds admitting a complex structure (see
Theorem 4.2). Notice that eight is the lowest dimension where this can occur, since for any even dimension
less than or equal to 6, only a finite number of real homotopy types of nilmanifolds exists. Indeed, in six
dimensions, Bazzoni and Mufioz prove in [1, Theorem 2] that there are infinitely many rational homotopy
types of nilmanifolds, but only 34 different real homotopy types. We also compute the de Rham cohomology
of the given nilmanifolds N,, which allows us to show that N, does not admit any symplectic structure for
any a.

The last section is devoted to study the existence of special Hermitian metrics on the nilmanifolds N, en-
dowed with the strongly non-nilpotent complex structure J,,1 found in Section 3. We prove in Theorem 5.2 that
the complex nilmanifolds X, = (Ng, J4,1) have Hermitian metrics satisfying the k-th Gauduchon condition for
every k [10]. Moreover, X, also admits balanced [20] (hence, strongly Gauduchon [23, 24]) Hermitian metrics
(see Theorem 5.3). Therefore, there are infinitely many real homotopy types of 8-dimensional nilmanifolds
with both generalized Gauduchon and balanced metrics.

2 Complex structures on nilpotent Lie algebras

In this section we collect some known results about real nilpotent Lie algebras (NLA for short) endowed with
complex structures. In particular, we pay special attention to real dimension 8 when the complex structure
is of strongly non-nilpotent type, recalling the main ideas in [18].
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A well-known invariant of a Lie algebra g is its ascending central series {gy }x, whose terms are given by

{go = {0}, and

@
gk={Xeg|[X,0] Sk}, fork>1.

Notice that g1 = Z(g) is the center of g. A Lie algebra g is nilpotent if there is an integer s > 1 such that g; = g,
for every k > s. In such case, the smallest integer s satisfying the condition is called the nilpotency step of g,
and the Lie algebra is said to be s-step nilpotent.

Let J be a complex structure on an NLA g, that is, an endomorphism J: g — g fulfilling J 2 = _Id and the
integrability condition (1). Observe that the terms gy in the series (2) may not be invariant under J. For this
reason, a new series {ay(J) }x adapted to the complex structure J is introduced in [3]:

{ao(]) = {0}, and
a(J) ={Xeg|[X,g] car-1(J) and [JX, g] c ax_1(J)}, fork > 1.

This series {ax(J)}« is called the ascending J-compatible series of g. Observe that every ax(J) < gi is an
even-dimensional J-invariant ideal of g, and a; (J) is indeed the largest subspace of the center g; which is
J-invariant.

Depending on the behaviour of the series {ax(J) }x, complex structures on NLAs can be classified into
different types:

Definition 2.1 ([3, 18]). A complex structure ] on a nilpotent Lie algebra g is said to be
(i) strongly non-nilpotent, or SnN for short, if a1 (J) = {0};
(ii) quasi-nilpotent, if a;(J) # {0}; moreover, ] is called
(ii.1) nilpotent, if there exists an integer t > O such that a;(J) = g,
(ii.2) weakly non-nilpotent, if there is an integer t > 0 satisfying a:(J) = a;(J), forevery l > t,and a;:(]) # g.

One can see that quasi-nilpotent complex structures on NLAs of a given dimension can be constructed
from other complex structures defined on (strictly) lower dimensional NLAs (see [18, Section 2] for details).
Therefore, the essentially new complex structures that arise in each even real dimension are those of strongly
non-nilpotent type. That is to say, SnN complex structures constitute the remaining piece to completely
understand complex geometry on nilpotent Lie algebras.

In real dimension 4 it is well known that SnN complex structures do not exist, whereas in dimension 6
one has the following result:

Theorem 2.2 ([27, 28]). Let g be an NLA of real dimension 6. If g admits an SnN complex structure, then the
terms of its ascending central series { gy }x have dimensions (dim gy ) = (1,3, 6) or (1, 3, 4, 6).

In fact, all the pairs (g, J) with dimg = 6 and a1 (J) = {0} have been classified by means of their complex
structure equations. It should be noted that only two NLAs of this dimension admit SnN complex structures,
namely, h7, and b3 in the notation of [27, 28].

Concerning higher dimensions, [18] provides several general restrictions on the terms of the ascending
central series of NLAs admitting SnN complex structures. Among them, we highlight the following one:

Theorem 2.3 ([18, Theorem 3.11]). Let (g, J) be a 2n-dimensional nilpotent Lie algebra, with n > 4, endowed
with a strongly non-nilpotent complex structure J. Then, 1 < dimg; <n-3.

Thanks to this result and using the doubly adapted basis method developed in [18], a structural result in the
spirit of Theorem 2.2 is proved for dimension 8:

Theorem 2.4 ([18, Theorem 4.1]). Let g be an NLA of real dimension 8. If g admits an SnN complex structure,
then the terms of its ascending central series {gy}r have dimensions (dimgy)x = (1,3,8), (1,3,5,8),
(1,3,6,8),(1,3,5,6,8),(1,4,8),(1,4,6,8),(1,5,8),0r (1, 5,6, 8).
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Moreover, the complex structure equations of all the previous pairs (g, J) with dimg = 8 and a1 (J) = {0} are
parametrized (see [18, Propositions 4.12, 4.13, and 4.14]). For the aim of this paper, we focus on the proposition:

Proposition 2.5 ([18, Proposition 4.12]). Let J be a strongly non-nilpotent complex structure on an 8-
dimensional nilpotent Lie algebra g such that dimg; = 1 and dimg, = 3. Then, there is a complex basis

{wh, w?, w?,w*) of bidegree (1, 0) with respect to ] satisfying the structure equations

dw' =0,
do? = Al —B(w“ _wul),
dw® = (C-D)w? —E(w" -w™) + Fw'l + (G+D)w'? - H(w** - w**) + (C - G) w?! + Kw?,
dw* :Lwli+Mw12+Nw1§—1\_/1w21+iSw22+Pw2§—Nw3i—Pw32,
for some coefficients s e Rand A,B,C,D,E,F,G,H,K,L,M,N,P ¢ C.

Notice that the coefficients above must fulfill the (non-linear) equations that guarantee the Jacobi identity of
the Lie algebra, i.e. d(dw*) =0 for 1 < k < 4.

3 Afamily of non-isomorphic 8-dimensional nilpotent Lie algebras
with complex structures

In this section we find an infinite family of (non-isomorphic) 8-dimensional nilpotent Lie algebras admitting
complex structures, providing an affirmative answer to Question 1.1.

In the complex equations given in Proposition 2.5, we choose the following particular values of the
parameters:
i D= 3i i

A=E=K=L=P=0, B=N=s=1, CZE’ > F=a, G:—E, H=-i, M-=ib,

where a, b € R. That is to say, we consider the complex structure equations
dw! =0,
dwz _ _wlll +UJ14,
3 11 . 12 12 21 . 24 24
dw’ =aw -i(w -w -w?)+i(w™ -w™),

dw® = ib (w? + W)+ +iw?? -3

€)

It is easy to see that the Jacobi identity holds, so for each pair (a, b) € R?, these structure equations define
a nilpotent Lie algebra of real dimension 8 endowed with a complex structure. We will study the underlying
real nilpotent Lie algebras and show that there is an infinite number of them.

Let {e'}¥ | be the real basis determined by

4

el = 2%Rew?!, €2 =20mw!, €>=2Tmw’, e*=2Tmuw?,

e’ =2NRew?, €®=-4Rew’, e’ =4Tmw’, e = 4Rew’.
Equivalently,

1 1 1 1
wlzi(—e1+iez), w2:5(65+i64), w3:Z(—eé+ie7), w4:Z(es+2ie3).

1 NOTATION: w” = w! A w/ and wi* = w! A wk, where w* is the conjugate of wk.
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Then, for any (a, b) € R?, one has a real nilpotent Lie algebra gq,» defined by the following structure
equations coming from (3):

de' = de® = dé® = o,

de4 _ e13

deS _ e23

Oa,b (@)
“ de® =3¢ + e25—2e35,

de’ =2ae'? e’ + ¥ 2e34,

1 1 2 2
de® = —2be' +e'® —2he® +e? — 26",

where e’ = e! A €. The integrable almost complex structure on 0aq,b is expressed in this real basis as

1
Jap(e) =€ Jap(€) =€ Jap(e) =€’ Jap(e)=e. ©
In the next lines, we will prove the following result:

Proposition 3.1. Ifthenilpotent Lie algebras g,,, and g, ,» are isomorphic, then there is a non-zero real number
p such that
a =+pa, and b =pb.

As a consequence, we are able to provide a positive answer to Question 1.1:

Theorem 3.2. The real Lie algebras gq,1, a € [0, o), define a family of pairwise non-isomorphic nilpotent Lie
algebras admitting complex structures.

Proof. Using Proposition 3.1 for b’ = b = 1 and for non-negative values of a and a’, we see that if g,,1 is
isomorphic to g1 then p = 1 and a’ = a. Hence, different values of a in [0, co) produce non-isomorphic Lie
algebras g4,1. Since /4,1 in (5) is an integrable almost complex structure on gg,1, any nilpotent Lie algebra in
this family has complex structures. O

Remark 3.3. Any Lie algebra g, is isomorphic to one and only one of the following: go,0, 91,0, OF ga,1, With

a € [0, 00). Indeed:

- Ifa#0andb = 0, then gq, is isomorphic to gi1,0. In fact, it is enough to apply to the equations (4) the
isomorphism given by diag (a™',a™',a™',a?,a*,a>,a>,a™*) ¢ GL(8,R).

— Ifb # 0, then the Lie algebra g, is isomorphic to 9)2),1- To see this, we first apply to the equations (4)
the transformation defined by diag (b™*,b™*,b™*,b™%,b"%,b>,b>,b™*) € GL(8, R) in order to get an
isomorphism from g, p, to g¢,1 Now, diag(1,-1,-1,-1,1,-1,1,-1) gives an isomorphism between the
Lie algebras gs,; and g_ ;.

—  Finally, applying Proposition 3.1 to the Lie algebras go,0, 91,0, and ga,1, a € [0, o), one concludes that any
two of them are never isomorphic.

Proof of Proposition 3.1. The rest of this section is devoted to the proof of Proposition 3.1. First, we normalize
several coefficients in the structure equations (4) in order to get simpler equations for the Lie algebras. With
this aim, let us introduce the new basis {v'}$_, given by

11 > 1 3 2 3 4 2 4
v =e, vVi=—¢€", vV=—e, VvV =——e,
V3 V3 V3
2 2 2 2
v5:7e5, v6:—e6, vi=Ze, vsz—es+ﬂe6.
3 3V3 3 3V3 93
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In terms of this basis, the structure equations (4) become

1 2
dvt=dv’=dv’ =0,
1
dv4:v3,
2
dv5:v3,
6 14 25 35 (6)
av’ =v + v -y,
12 1 2
dv’ = av +v5+v4+v34,

8 16 2 2
dv’ =v —2ﬁv5+v7—/3v35—v45,

where a = 47‘% and 8 = sz_ From now on, we will denote the real Lie algebra by m, g (instead of g, ;) to
indicate that we are considering the structure equations (6) above.

We first observe that the algebras m,, g share the same values for the usual invariants of nilpotent Lie
algebras. More precisely, it can be seen that the dimensions of the terms in the ascending central series
are (1, 3,5, 8), and those of the descending central series are (8, 5, 3, 1). Furthermore, the Lie algebras
cannot be distinguished by their cohomology groups (see Section 4 for more details). Hence, we are led to
directly study the existence of an isomorphism between the real Lie algebras m,, g in this family.

Let m,, g and m,/ g be two nilpotent Lie algebras defined by the structure equations (6) for («, 8) and
(', B"), respectively. Let fim, 3 —> m, g be a homomorphism of Lie algebras. Hence, the dual map
frmy, 5 — mg 5 extends to a map F: A" mg, 5 — A"m 5 that commutes with the differentials, i.e.
Fod=doF.

Suppose that there exists a Lie algebra isomorphism between m, 3 and m, g/, and let {vk }§=1 (resp.
{v'¥38_.) be a hasis for m;, 5 (resp. m, 5,) satisfying equations (6) with (a, ) (resp. (', 8)). In terms of
these bases, any Lie algebra isomorphism is defined by

. 8 . .
FW'H =Y NV, i=1,...,8,
j=1
satisfying the conditions

F(dv') =d(F(v'")), foreach1<i<8, @

where the matrix A = ()\;:),",‘:1,_“,8 belongs to GL(8, R).
In what follows, we will prove that A} # 0, and
a’:i)\}a, ,8':)&5.

Notice that this result implies Proposition 3.1, since a, b, a’, b’ are related to o, 8, o', 8’ by a = 4—\/‘%, B=%,

r_ 4a r_2b
a =5 and g’ = 5-.
Lemma 3.4. The elements F(V'") ¢ m;, s satisfy the following conditions:

F(V’i) A2 = 0, fori=1,2,3;
F(WH)AvB% -0, fori=4,5;

F(W/)YAVIB®T —0, fori=6,7.
In particular, the matrix A = (/\}’:)1-,,- € GL(8, R) that determines F is a block triangular matrix, and thus
det(\)ijo1,2,3 - det(A)ijeas - det(X)ijze7 - A§ = det A # O,

Proof. First, we observe that from the equations (6), the equalities (7) fori = 1, 2, 3 simply read as d(F (v’ i )) =
0. Performing this calculation, one immediately gets

A=0,forl<i<3and4<j<8, (8)
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and thus we have F(v'") € (v}, v?,v?), or equivalently F(v'') Av'® = 0, fori =1, 2, 3.

Bearing in mind the values (8), one can see that (7) for i = 4, 5 can be written as
0=d(F(V'"))=F(@@'") = 053 M - AP A3 +ad) v+ A7 A3 - A2 A3 + ) v
F ALY ATy ALyt (A§_3 A - AT+ )\f;) V2 4 ALy 9)
+ ()\2 - 2,6)\§3)v25 + )\i},v27 + )\i7 v ()\2 +B/\§)v35 - /\§v45.
As a consequence, the vanishing of the coefficients in v?, v*4, v**, v¢, and v*?, implies that Al = A} = A} = 0,

and
M=AT SN A, XM= -7, fori=4,5. (10)

Therefore, F (v’i) € (vl, T ), fori = 4,5, as desired. Note that (10) will be used again in the proof of the
next lemma.
Let us now consider i = 6, 7 in the equalities (7). It is easy to check that

d(F(V'1)) - F(dv'") = \gv'® + ¢,

where&; e (V1) ¢ A%(v1,...,v®). Here, and in what follows, the orthogonal is taken with respect to the inner
product in A2 (vl, cee v8) defined by declaring the standard basis {v'’ }1<i<j<s to be orthonormal. Therefore,
the equalities (7) for i = 6, 7 in particular imply

A =)2;=0
Hence, F(v') e (v},...,Vv), fori = 6, 7, and the proof of the lemma is complete. O

We now make use of Lemma 3.4 to prove the following sharper result.

Lemma 3.5. The elements F(v'") ¢ w;, 5 additionally satisfy F(V')avi=0,fori=1,2,3,and
F(vl4) A v1234 _ O, F(VIS) A V1235 _ 0’ F(vlﬁ) A v123456 _ O, and F(VI7) A v123457 =0.

Therefore, A = ()\})i,}- € GL(8, R) is a lower triangular matrix, and

A =deta £ 0.

8
=1

Proof. Let us first recall that all the conditions in Lemma 3.4 and those included along its proof must be
satisfied in order to ensure that F is an isomorphism of Lie algebras.
A direct calculation shows that

d(F(/'®)) = F(@v'®) == (A3 2§ + X5 26) v = (507 + M) v + &,

where¢ e (V?®, 37}t ¢ A2(v1, ..., v®). Now, the condition (7) for i = 8 implies the vanishing of the coefficients
in v?® and v*” above, so the following homogeneous system must be satisfied:

() (3)-C)
A7) \o)”
Since by Lemma 3.4 one has det(/\}:)i,j:w # 0, we conclude that \J = A3 = 0. Therefore,
F(V'') e (v',v?), fori=1,2. (1)
By the equations (9) for i = 4, 5, one observes that the vanishing of the coefficient in the term vi? gives the

following homogeneous system
A=A\ (A3 (o
A -2 )\3) \o)”
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By Lemma 3.4 and (11) we get det(\});j-1,2 - A3 = det(X})ij-1,2,3 # 0, hence A] = A] = 0. Consequently,
F(V?) e (v?), (12)
as stated in the lemma. Now, (10) reduces to
M=AA, A =XAA3, A =ATAL, AZ=A3. 13)
A direct computation bearing in mind (11) and (12) gives
d(F(v'®)) = F(av'®) = (A6 = 2328 =23 08) V™ + (AS + A3 00) v = (A6 - A3 A2) v + 0y,
dA(F(V'T)) = F(@v'") = (A =208 =25 08) V2 + (A7 = A3 0) v = (Ae + A3 25) vP + 93,

where 91, 9; € (v, v**,v*®)t ¢ A?(v!,...,v®). Therefore, the equalities (7) for i = 6, 7 in particular imply
that the coefficients in v** and v>> above are zero, and using (13) we obtain

A=A (37 A=A A=) A=A () (14)

Furthermore, the coefficients in v?*> must also vanish, so taking into account (13) together with the fact that
A3 # 0, we arrive at the following equations:

)2+ (M) -AA =0,  A(M+2A))=o.

We observe that A} = 0. Indeed, if A} is non-zero, then the second expression gives )\g = —2 A3 and replacing
it in the first one, we arrive at det(A}’-)i, i=1,2 = 0, which is a contradiction. Hence, one must have )\% =0, which
in turn implies ¢ = A/ = 0 and thus allows us to ensure that

F(V'YY e ('), FOW*e(',...,vY, and FO'7)e(v',...,v’, V'),
as desired. In particular, )\} #0.
Finally, using (13) we get
dA(F(V'T)) = F(@v'7) = —(M A + AT a4) v + ¢ = 2 a1 A 3 v + ¢,

where ¢ € (v!*)* ¢ A%(v1,...,Vv®). Now, the equality (7) for i = 7 implies A = 0, and consequently, also
A2 = A$ = 0. Therefore,

F(V'?) e (V?), F(W?)e (v',v*,v?,v?), and F(V'®)e(v',...,v%),
concluding the proof of the lemma. O

We next make use of the previous result to relate the values of the parameters («, 3) and (o', 8°).

Lemma 3.6. If the nilpotent Lie algebras m,, g and m g are isomorphic, then
o = :&:)\i a, g = /\% 3.

Proof. Let us first recall that all the conditions in Lemma 3.5 and in its proof must be satisfied in order to have
an isomorphism F of the Lie algebras m, 3 and m,/ 4. In particular, the expressions (13) and (14) are reduced
to

No=AAL 0 A =A0A, AE=AT(A)N AT=Aar (M)A (15)

In order to prove the lemma, we need to study more deeply the conditions (7) for i = 6, 7, 8 (notice that (7)
are trivially fulfilled for 1 < i < 5).
Let us start with i = 6. A direct computation applying (15) gives us

d(F(v'®)) = F(dv'®) = 3 [23 03 - O0)?] v+ 2503 (B =23 ) v ¢,
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where ¢ € (v, v?®)t c A2(v1, ..., v®). Since A3 A3 # 0, from the condition (7) for i = 6 it follows that A3 = A3
and (A3)? = (A])?, that is,
A=A = (16)

Let us remark that this greatly simplifies (15), which reduces to
A=A =007 A=) N =) (17)

Furthermore, the conditions (7) for i = 6, 7 become

0=d(F(v'®)) - F(dv'®) =- ] [Ag ¥ )\i] v [A?, A (A )\i)] v+ [Ag FAL(AS + )\g)] v3,

0=d(F(v'7)) - F(dv'7) == AL [N # 1 - Al (@Al 7 )] V2 + M- AT (3 =21 v

+ [AZ A OG- ,\g‘)] v,
Hence, it is easy to see that
A =203, X = AL(A] +A3), N =M1 (A3 F A1),

A= el (aalsd), Af=al [A‘{ 20— 7 aA})] . AL ==L (g -0, (18)

Let us note that this makes the conditions (7) to be satisfied for every 1 < i < 7, so we must turn our attention
to i = 8. Using (16) and (17), we compute

d(F(v'®)) = F(@v'®) = [Ag = AL (A0 A0 AD) | v! + A 520 (A + A1 03) ] v
#2828+ 21 (A AT (S =28 0D)) ] v+ A E 3 (D)7 v
~[E+ 8- (D)2 058 D] VP - P8 F (D] v 4w,

where d € (v14, v?4,v? V34, v v*) ¢ A%(v, ..., v®). Equalling to zero the coefficients in v'*, v**, and v*°,

and bearing in mind (18), one has
A= (AD2(A+223),  AF=2M (D)% AR =MD
Moreover, from these equalities together with the vanishing of the coefficient in v*°, it is easy to see that

\e AL A\
z—i?(ﬂ -BA1).

We now replace all these values in the coefficients of v** and v*°. Their annihilation gives us the desired

relation between («, 8) and (o', 8'). O
As we observed above, Lemma 3.6 implies Proposition 3.1 with p = A] # 0, because a, b, a’, b’ are related to
a,B,a’, 8 bya =42, 3= 20 o = L and B = 2. O

4 An infinite family of nilmanifolds N, with complex structures

In this section we show how the results of the previous section allow us to conclude that in dimension eight
there exist infinitely many real homotopy types of nilmanifolds admitting complex structures.

Let us start reviewing some results about minimal models and homotopy theory of nilmanifolds. Sullivan
showed in [26] that it is possible to associate to any nilpotent CW-complex X a minimal model, i.e. a
commutative differential graded algebra, cdga, (A Vx, d) defined over the rational numbers Q satisfying a
certain minimality condition, which encodes the rational homotopy type of X [12].

Recall that a space X is nilpotent if its fundamental group =1 (X) is a nilpotent group and acts in a
nilpotent way on the higher homotopy groups 7 (X) for k > 1. These conditions are fulfilled when the space
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is a nilmanifold N, i.e. N = I'\G is a compact quotient of a connected, simply connected, nilpotent Lie group
G by a lattice I" of maximal rank. Indeed, for any nilmanifold N one has =1 (N) = I', hence nilpotent, and
m(N) = 0 for every k > 2.

A commutative differential graded algebra (A V, d) defined over K (= Q or R) is said to be minimal if the
following conditions are satisfied:

(i) AV is the free commutative algebra generated by the graded vector space V = aVk;
(i) there exists a basis {x;};c;, for some well-ordered index set J, such that deg(x;) < deg(x;) ifi < j, and
each dx; is expressed in terms of preceding x; (i < j).

Given a differentiable manifold M, a K-minimal model of M is a minimal cdga (A V, d) over K together
with a quasi-isomorphism ¢ from (A V, d) to the K-de Rham complex of M, i.e. a morphism ¢ inducing
an isomorphism on cohomology. Note that the K-de Rham complex of M is the usual de Rham complex
of differential forms when K = R, whereas for K = Q one considers the Q-polynomial forms instead. Two
manifolds M; and M; have the same K-homotopy type if and only if their K-minimal models are isomorphic
[4, 26]. Clearly, if M1 and M, have different real homotopy types, then M; and M, also have different rational
homotopy types.

Let N = I'\G be a nilmanifold of dimension n and denote by g the Lie algebra of G. The minimal model
of N = I'\G is given by the Chevalley-Eilenberg complex (A g*, d) of the nilpotent Lie algebra g. Indeed,
according to Mal’cev [19], the existence of the lattice I" of maximal rank in G is equivalent to the nilpotent Lie

algebra g being rational. The latter condition is in turn equivalent to the existence of a basis {e*, ..., "} for
the dual g* for which the structure constants are rational numbers. Since the Lie algebra g is nilpotent, one
can take a basis {e', ..., e"} for g* as above satisfying

de' =de* =0, de - > aékei/\ek forj=3,...,n,
i\k<j

where a’;k € Q. Therefore, the cdga (A g*, d) over Q is minimal, because it satisfies (i) and (ii) just taking

J={1,...,n}and V = V= (X150 Xn) = Z;':1 Qx;, where x; = ¢ for 1 < j < n. That is to say, there are n
generators xi, ..., X, of degree 1, and one has the Q-minimal cdga
(Ax1,..0,x), d). (19)

Now, the cdga (A g*, d) over R is also minimal, since it is given by
(A1, ..., x) ®R, d). (20)

Nomizu proved in [21] that the canonical morphism ¢ from the Chevalley-Eilenberg complex (A g*, d) to the
de Rham complex (2*(I'\G), d) induces an isomorphism on cohomology. Therefore, the R-minimal model
of the nilmanifold N = I'\G is given by (20). As it was observed by Hasegawa in [13], the cdga (19) is also the
Q-minimal model of N. Moreover, by using a result in [4] asserting that a K-minimal model, K = Q or R, of a
compact birational Kdhler manifold is formal, Hasegawa proved that an even-dimensional nilmanifold does
not admit any Kdhler metric unless it is a torus, by showing that the minimal model (19) is never formal. (For
more results on rational homotopy theory see [8], and for more applications to symplectic geometry see [22].)

It is proved in [1] that, up to dimension 5, the number of rational homotopy types of nilmanifolds is finite.
However, in six dimensions the following result holds:

Theorem 4.1 ([1, Theorem 2]). There are 34 real homotopy types of 6-dimensional nilmanifolds, and infinitely
many rational homotopy types of 6-dimensional nilmanifolds.

As an obvious consequence, there is a finite number of real homotopy types of 6-dimensional nilmanifolds
admitting a complex structure. In what follows, we will show that for nilmanifolds with complex structures
in eight dimensions there are infinitely many real homotopy types. To see this, let us take a non-negative
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rational number a and consider the connected, simply connected, nilpotent Lie group G, corresponding to
the nilpotent Lie algebra g, 1 given in Section 3. It follows from (4) that the algebra g,,; is rational, hence
by Mal’cev [19], there exists a lattice I'; of maximal rank in G,. We denote by N, = I';\ G, the corresponding
compact quotient. The nilmanifold N, admits complex structures, for instance, the strongly non-nilpotent
complex structure J,,; defined in (5) for b = 1.

Now, as we explained above, the R-minimal model of the nilmanifold N, is given by the Chevalley-
Eilenberg complex (A g; 1, d) of the nilpotent Lie algebra gq,1. As a consequence of Theorem 3.2, one has
that two such R-minimal models are isomorphic if and only if a = a’. Therefore, we have proved the following
result:

Theorem 4.2, There are infinitely many real homotopy types of 8-dimensional nilmanifolds admitting a
complex structure.

A direct calculation using Nomizu’s theorem [21] allows to explicitly compute the de Rham cohomology
groups of any nilmanifold N,. In our case, we have:

Hgr(Na) = ([e'], [€°], [€’]),

Hir(No) = ([e"], [e"], €], [*]),

HSR(Na :<[el ] [ 257 26346], [3e146 25 +2e356] [8156 2e346]
[

15 2 2 12 12 2 2 2
3e7 136 12670 127, [20"0 + 368 £ 477 — 27, [2a€” - 3° - &7°7]).

By Poincaré duality, the following Betti numbers for N, are obtained:
b()(Na):bS(Na):l, b]_(Na):b7(Ng):3, bz(Na):bG(Na):4, bB(Na):bS(Na):7

The Betti number b;(N,;) can be computed by taking into account that the Euler characteristic x of a
nilmanifold always vanishes. Hence,

8
0=X(Na) = 3 (~1)"bk(Na) = b4(Na) + 2 (bo(Na) - b1(Na) + b2 (Na) - b3(Na)),
k=0
which implies b4(N4) = 10.
The second de Rham cohomology group provides the following additional geometric information on the
nilmanifolds Ng.

Proposition 4.3. For each non-negative rational number a, the nilmanifold N, does not admit any symplectic
structure.

Proof. It is enough to see that any de Rham cohomology class a in H2;(N,) is degenerate. Indeed, since
a=X[e"]+ a[e!] + A3[e®] + \4[e®*] it is clear that the cup product a U a U a vanishes, so a* = 0 and a is
degenerate. O

In contrast to this result, in the following section we will show that these nilmanifolds have many special
Hermitian metrics.

5 Special metrics on the nilmanifolds N,

We here study the existence of special Hermitian metrics on the nilmanifolds N, endowed with the strongly
non-nilpotent complex structures given in the previous sections. More concretely, we find many generalized
Gauduchon metrics as well as balanced Hermitian metrics.

Let us start by recalling the definition and the main properties of the k-th Gauduchon metrics studied
in [10].
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Definition 5.1 ([10]). Let X = (M, J) be a compact complex manifold of complex dimension n, and let k be an
integer such that 1 < k < n— 1. A J-Hermitian metric g on X is called k-th Gauduchon if its fundamental 2-form
F satisfies the condition d0F* A F*™%1 = 0.

Clearly, any SKT metric (a J-Hermitian metric g with fundamental form F satisfying 00F = 0) is a 1-st
Gauduchon metric, and any astheno-Kéhler metric (i.e. a J-Hermitian metric g such that its fundamental form
F satisfies the condition d0F" 2 = 0) is an (n - 2)-th Gauduchon metric. SKT, resp. astheno-Kéhler, metrics
were first introduced by Bismut in [2], resp. by Jost and Yau in [15], and they have been further studied by
many authors. Notice that for k = n — 1 one gets the standard metrics found in [11].

In [10] an extension of Gauduchon’s result for standard metrics is proved. More concretely, it is shown
in [10, Corollary 4] that if (M, J, F) is an n-dimensional compact Hermitian manifold, then for any integer
1 < k < n -1, there exists a unique constant v, (F) and a (unique up to a constant) function v € C*°(M) such
that .

%aé(eVFk) AFEY Z L (F)e'F

If (M, ], F) is Kéhler, then ~(F) = 0 and v is a constant function for any 1 < k < n - 1. Moreover, for any
Hermitian metric on a compact complex manifold one has v,-1(F) = 0.

The constant +(F) depends smoothly on F (see [10, Proposition 9]). Furthermore, it is proved in [10,
Proposition 8] that 4, (F) = 0 if and only if there exists a k-th Gauduchon metric in the conformal class of F.

Some compact complex manifolds with generalized Gauduchon metrics are constructed in [9, 10, 14, 17]
by different methods. In the following result we find many generalized Gauduchon nilmanifolds of complex
dimension 4.

As in Section 4, for each non-negative rational number a, we consider the nilmanifold N, endowed
with the complex structure given by (5) for b = 1, i.e. with the complex structure J,,1. Hence, (Ng, Ja,1) is
a compact complex manifold of complex dimension 4. We will denote this complex nilmanifold by X4, i.e.
Xa = (Na,]a,l)-

Theorem 5.2. For each non-negative rational number a, the complex nilmanifold X, has a k-th Gauduchon
metric, for every 1 < k < 3. Therefore, there are infinitely many real homotopy types of 8-dimensional k-th
Gauduchon nilmanifolds, for every 1 < k < 3.

Proof. By Theorem 4.2, we know that the nilmanifolds N, and N, have different real homotopy types for
a # a’'. The complex structure equations for X, = (Ng, J4,1) are given by (3) with b = 1, i.e.

dw! =0,

dw? = —w™ + w4,

du? = awli _i(wlz —wli _wzi) +i(w24 _wzz])’

dw® = i (W™ + ) + WP +iw?? -t

(1)

We define the (1, 1)-form F on X, given by
F= 101 fol +iw? +in® + %iw“‘ —50 4 50°0

4

Itis easy to check that F defines a positive-definite metric on X,, hence a Hermitian metric on X,. Furthermore,
a direct calculation using the structure equations (21) shows that

O0F =— 41w - (1-61)wB +aw™ - (1-1)w?P + (1 +61) w2 - PP

1323 1412 . 1414 1434 .\ 2312 2313 . 2424 3414
—w T —aw T 121w T w T A (1 DT T T T = 20w

Therefore, one has 00F A F? = 0 for any a, i.e. F is a 1-st Gauduchon metric on the complex nilmanifold X,
for any a.

By [16, Proposition 2.2], if an invariant Hermitian metric F on a complex nilmanifold X of complex
dimension n > 4 is k-th Gauduchon for some 1 < k < n - 2, then it is k-th Gauduchon for any other k.
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Since any invariant Hermitian metric is (n — 1)-Gauduchon, we conclude that the 1-st Gauduchon metric on
X, constructed above are also k-th Gauduchon for k = 2, 3. O

By a direct calculation it can be proved that the compact complex manifolds X, are not SKT (see [7] for general
results) and, moreover, that the manifolds X, do not admit any invariant astheno-Kédhler metric.

A particularly interesting class of standard metrics is the one given by balanced Hermitian metrics,
defined by the condition dF"~! = 0. Important aspects of these metrics were first investigated by Michelsohn
in [20], and many authors have constructed balanced manifolds and studied their properties since then. In
the following result we find many balanced nilmanifolds of complex dimension 4.

Theorem 5.3. For each non-negative rational number a, the complex nilmanifold X, has a balanced Hermitian
metric. Therefore, there are infinitely many real homotopy types of 8-dimensional balanced nilmanifolds.

Proof. We will define a balanced Hermitian metric on X, = (Ng, J4,1) depending on the values of the rational
number a.
For a = 0, we consider the (1, 1)-form F on X, given by

. 11 22 3 4 13 1
2Fo =i (2w +w? + 40P + ") + 20" - 207,

Hence, Fy defines a positive-definite metric on Xy. Since Fy is real, the closedness of F(3) is equivalent to the
condition
OFy AF§ = 0.

Using the structure equations (21) for a = 0, we get

20Fo = 4w' —4w% + (i- 1)<.u142 +iw'® - 40?0

S+ D) 22 4 2 302

One can check that 9Fo AF} = 0, i.e. dF3 = 0, so F is a balanced Hermitian metric on the complex nilmanifold
Xo.
For any rational number a > 0, we define the (1, 1)-form F, on X, given by
2F; = i(a(a + 1)au1i +w 0P Zof‘z') +aw? - aw’t + 0 -0
It is clear that F, defines a Hermitian metric on X, (@ > 0). A direct calculation using the structure
equations (21) shows that

20Fg = iw'? + 20 —aiw® -0 - (2-i(a- 1))(&1142 +2iw'

—w142‘—(2+i(a—1))w24i—szl‘i—wzl‘;—ziw%l—w“é.

Moreover, one can check that 0F, A F2 = 0, and consequently dF> = 0. Therefore, F, is a balanced metric on
the complex nilmanifold X, for any positive rational number a. O

In [23, 24] Popovici has introduced and investigated the class of strongly Gauduchon metrics F, which are
defined by the condition 0F"~* = 9, for some complex form ~ of bidegree (n, n — 2) on a compact complex
manifold X of complex dimension n. It is clear by definition that any balanced metric is strongly Gauduchon,
and any strongly Gauduchon metric is standard.

Hence, as an immediate consequence of Theorem 5.3 we get:

Corollary 5.4. There are infinitely many real homotopy types of 8-dimensional strongly Gauduchon nilmani-
folds.

It is well known that the existence of a Kdhler metric on an even dimensional nilmanifold reduces the
nilmanifold to be a torus, so the underlying Lie algebra is abelian and the minimal model is formal [13].
More generally, it seems natural to ask if the existence of other geometric structures on nilmanifolds imposes
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some restriction on their real homotopy type. For instance, as mentioned in the introduction, it is an inter-
esting question if the number of real homotopy types of 8-dimensional nilmanifolds admitting an invariant
hypercomplex structure is finite or not. In addition to this problem, the answers to the following questions
are, to our knowledge, unknown:

Question A. Are there infinitely many real homotopy types of 8-dimensional SKT nilmanifolds?

Question B. Are there infinitely many real homotopy types of 8-dimensional astheno-Kdhler nilmanifolds?
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