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1 Introduction
Let gbe an even-dimensional real nilpotent Lie algebra. A complex structure on g is an endomorphism J∶ gÐ→
g satisfying J2 = −Id and the integrability condition given by the vanishing of the Nijenhuis tensor, i.e.

NJ(X, Y) ∶= [X, Y] + J[JX, Y] + J[X, JY] − [JX, JY] = 0, (1)

for all X, Y ∈ g. The classi�cation of nilpotent Lie algebras endowed with such structures has interesting
geometrical applications; for instance, it allows to construct complex nilmanifolds and study their geometric
properties. Let us recall that a nilmanifold is a compact quotient Γ /G of a connected, simply connected,
nilpotent Lie group G by a lattice Γ of maximal rank in G. If the Lie algebra g of G has a complex structure J,
then a compact complex manifold X = (Γ /G, J) is de�ned in a natural way.

The problem of determining which nilpotent Lie algebras admit a complex structure is completely
solved only up to dimension 6. In real dimension 4 there are two nilpotent Lie algebras with a complex
structure, namely, the abelian Lie algebra and the Lie algebra underlying the Kodaira-Thurstonmanifold. The
classi�cation of 6-dimensional nilpotent Lie algebras having a complex structure was achieved by Salamon
in [25], and there are precisely 18 isomorphism classes. In higher dimensions only partial results are known
(see [18] and the references therein). In particular, note that there is no classi�cation of real nilpotent Lie
algebras of dimension 8.

In [5, 6] Dotti and Fino study the 8-dimensional nilpotent Lie algebras g that admit a hypercomplex
structure, i.e. a pair of anticommuting complex structures {Ji}i=1,2. They prove that if g admits such a
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structure, then g must be 2-step nilpotent and have �rst Betti number b1(g) ≥ 4. They also �nd an explicit
description of the 8-dimensional nilpotent Lie algebras admitting a hypercomplex structure in terms of
families which depend on several real parameters. However, it seems to be unclear whether these families
contain an in�nite number of pairwise non-isomorphic Lie algebras or not. Motivated by this fact, we address
the following more general problem:

Question 1.1. Do there exist in�nite non-isomorphic nilpotent Lie algebras in dimension 8 admitting complex
structures?

In this paper we provide an a�rmative answer to this question. In addition, we show that there are in�nitely
many real homotopy types of 8-dimensional nilmanifolds admitting a complex structure. Moreover, the
nilmanifolds that we construct can be endowed with both generalized Gauduchon and balanced Hermitian
metrics. It should be noted that our results are based on the theory of strongly non-nilpotent complex
structures developed in [18].

The paper is structured as follows. In Section 2 we review the main results on complex structures found
in [18]. It turns out that the essentially new complex structures on nilpotent Lie algebras that arise in each
even real dimension are those of strongly non-nilpotent type. A complex structure J on a nilpotent Lie algebra
g is said to be strongly non-nilpotent (SnN for short) if the center of g does not contain any non-trivial J-
invariant ideal. In [18, Theorem 4.1] a structure result is obtained for the 8-dimensional nilpotent Lie algebras
admitting anSnNcomplex structure in termsof thedimensionsof their ascending central series. Furthermore,
a complete description of the SnN complex geometry is given (see [18, Propositions 4.12, 4.13, and 4.14]).

We make use of [18, Proposition 4.12] to answer Question 1.1. Such result describes the generic complex
equations of any SnN complex structure on 8-dimensional nilpotent Lie algebras g with ascending central
series {gk}k of dimensions (1, 3, 8), (1, 3, 5, 8), (1, 3, 6, 8), or (1, 3, 5, 6, 8) (see Proposition 2.5). In Sec-
tion 3 we present a speci�c choice of complex parameters that allows us to construct a family ga, a ∈ [0,∞),
of pairwise non-isomorphic 8-dimensional nilpotent Lie algebras endowed with complex structures (see
Theorem3.2). Note that the ascending central series of each ga is of type (1, 3, 5, 8), thus ga is 4-step nilpotent
and has �rst Betti number b1(ga) = 3.

In Section4we consider the family ga with rational values of the parameter a in order to show that in eight
dimensions there are in�nitelymany real homotopy types of nilmanifolds admitting a complex structure (see
Theorem 4.2). Notice that eight is the lowest dimension where this can occur, since for any even dimension
less than or equal to 6, only a �nite number of real homotopy types of nilmanifolds exists. Indeed, in six
dimensions, Bazzoni and Muñoz prove in [1, Theorem 2] that there are in�nitely many rational homotopy
types of nilmanifolds, but only 34 di�erent real homotopy types. We also compute the de Rham cohomology
of the given nilmanifolds Na, which allows us to show that Na does not admit any symplectic structure for
any a.

The last section is devoted to study the existence of special Hermitianmetrics on the nilmanifolds Na en-
dowedwith the strongly non-nilpotent complex structure Ja,1 found in Section 3.Weprove in Theorem5.2 that
the complex nilmanifolds Xa = (Na , Ja,1)haveHermitianmetrics satisfying the k-th Gauduchon condition for
every k [10]. Moreover, Xa also admits balanced [20] (hence, strongly Gauduchon [23, 24]) Hermitian metrics
(see Theorem 5.3). Therefore, there are in�nitely many real homotopy types of 8-dimensional nilmanifolds
with both generalized Gauduchon and balanced metrics.

2 Complex structures on nilpotent Lie algebras
In this section we collect some known results about real nilpotent Lie algebras (NLA for short) endowed with
complex structures. In particular, we pay special attention to real dimension 8 when the complex structure
is of strongly non-nilpotent type, recalling the main ideas in [18].
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A well-known invariant of a Lie algebra g is its ascending central series {gk}k, whose terms are given by

⎧⎪⎪⎨⎪⎪⎩

g0 = {0}, and

gk = {X ∈ g ∣ [X, g] ⊆ gk−1}, for k ≥ 1.
(2)

Notice that g1 = Z(g) is the center of g. A Lie algebra g is nilpotent if there is an integer s ≥ 1 such that gk = g,
for every k ≥ s. In such case, the smallest integer s satisfying the condition is called the nilpotency step of g,
and the Lie algebra is said to be s-step nilpotent.

Let J be a complex structure on an NLA g, that is, an endomorphism J∶ g Ð→ g ful�lling J2 = −Id and the
integrability condition (1). Observe that the terms gk in the series (2) may not be invariant under J. For this
reason, a new series {ak(J)}k adapted to the complex structure J is introduced in [3]:

⎧⎪⎪⎨⎪⎪⎩

a0(J) = {0}, and

ak(J) = {X ∈ g ∣ [X, g] ⊆ ak−1(J) and [JX, g] ⊆ ak−1(J)}, for k ≥ 1.

This series {ak(J)}k is called the ascending J-compatible series of g. Observe that every ak(J) ⊆ gk is an
even-dimensional J-invariant ideal of g, and a1(J) is indeed the largest subspace of the center g1 which is
J-invariant.

Depending on the behaviour of the series {ak(J)}k, complex structures on NLAs can be classi�ed into
di�erent types:

De�nition 2.1 ([3, 18]). A complex structure J on a nilpotent Lie algebra g is said to be
(i) strongly non-nilpotent, or SnN for short, if a1(J) = {0};
(ii) quasi-nilpotent, if a1(J) ≠ {0}; moreover, J is called

(ii.1) nilpotent, if there exists an integer t > 0 such that at(J) = g,
(ii.2) weakly non-nilpotent, if there is an integer t > 0 satisfying at(J) = al(J), for every l ≥ t, and at(J) ≠ g.

One can see that quasi-nilpotent complex structures on NLAs of a given dimension can be constructed
from other complex structures de�ned on (strictly) lower dimensional NLAs (see [18, Section 2] for details).
Therefore, the essentially new complex structures that arise in each even real dimension are those of strongly
non-nilpotent type. That is to say, SnN complex structures constitute the remaining piece to completely
understand complex geometry on nilpotent Lie algebras.

In real dimension 4 it is well known that SnN complex structures do not exist, whereas in dimension 6
one has the following result:

Theorem 2.2 ([27, 28]). Let g be an NLA of real dimension 6. If g admits an SnN complex structure, then the
terms of its ascending central series {gk}k have dimensions (dim gk)k = (1, 3, 6) or (1, 3, 4, 6).

In fact, all the pairs (g, J) with dim g = 6 and a1(J) = {0} have been classi�ed by means of their complex
structure equations. It should be noted that only two NLAs of this dimension admit SnN complex structures,
namely, h−19 and h+26 in the notation of [27, 28].

Concerning higher dimensions, [18] provides several general restrictions on the terms of the ascending
central series of NLAs admitting SnN complex structures. Among them, we highlight the following one:

Theorem 2.3 ([18, Theorem 3.11]). Let (g, J) be a 2n-dimensional nilpotent Lie algebra, with n ≥ 4, endowed
with a strongly non-nilpotent complex structure J. Then, 1 ≤ dim g1 ≤ n − 3.

Thanks to this result and using the doubly adapted basis method developed in [18], a structural result in the
spirit of Theorem 2.2 is proved for dimension 8:

Theorem 2.4 ([18, Theorem 4.1]). Let g be an NLA of real dimension 8. If g admits an SnN complex structure,
then the terms of its ascending central series {gk}k have dimensions (dim gk)k = (1, 3, 8), (1, 3, 5, 8),
(1, 3, 6, 8), (1, 3, 5, 6, 8), (1, 4, 8), (1, 4, 6, 8), (1, 5, 8), or (1, 5, 6, 8).
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Moreover, the complex structure equations of all the previous pairs (g, J)with dim g = 8 and a1(J) = {0} are
parametrized (see [18, Propositions 4.12, 4.13, and4.14]). For the aimof this paper,we focus on theproposition:

Proposition 2.5 ([18, Proposition 4.12]). Let J be a strongly non-nilpotent complex structure on an 8-
dimensional nilpotent Lie algebra g such that dim g1 = 1 and dim g2 = 3. Then, there is a complex basis
{ω1,ω2,ω3,ω4} of bidegree (1, 0) with respect to J satisfying the structure equations

1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dω1 = 0,

dω2 = Aω11̄ − B(ω14 − ω14̄),

dω3 = (C − D)ω12 − E (ω14 − ω14̄) + F ω11̄ + (G + D)ω12̄ − H (ω24 − ω24̄) + (C − G)ω21̄ + K ω22̄,

dω4 = Lω11̄ +M ω12̄ + N ω13̄ − M̄ ω21̄ + i sω22̄ + Pω23̄ − N̄ ω31̄ − P̄ω32̄,

for some coe�cients s ∈ R and A, B, C, D, E, F, G,H, K, L,M, N, P ∈ C.

Notice that the coe�cients above must ful�ll the (non-linear) equations that guarantee the Jacobi identity of
the Lie algebra, i.e. d(dωk) = 0 for 1 ≤ k ≤ 4.

3 A family of non-isomorphic 8-dimensional nilpotent Lie algebras
with complex structures

In this section we �nd an in�nite family of (non-isomorphic) 8-dimensional nilpotent Lie algebras admitting
complex structures, providing an a�rmative answer to Question 1.1.

In the complex equations given in Proposition 2.5, we choose the following particular values of the
parameters:

A = E = K = L = P = 0, B = N = s = 1, C = i
2
, D = 3 i

2
, F = a, G = − i

2
, H = −i, M = ib,

where a, b ∈ R. That is to say, we consider the complex structure equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dω1 = 0,

dω2 = −ω14 + ω14̄,

dω3 = aω11̄ − i (ω12 − ω12̄ − ω21̄) + i (ω24 − ω24̄),

dω4 = i b (ω12̄ + ω21̄) + ω13̄ + iω22̄ − ω31̄.

(3)

It is easy to see that the Jacobi identity holds, so for each pair (a, b) ∈ R2, these structure equations de�ne
a nilpotent Lie algebra of real dimension 8 endowed with a complex structure. We will study the underlying
real nilpotent Lie algebras and show that there is an in�nite number of them.

Let {ei}8
i=1 be the real basis determined by

e1 = −2Reω1, e2 = 2Imω1, e3 = 2Imω4, e4 = 2Imω2,

e5 = 2Reω2, e6 = −4Reω3, e7 = 4Imω3, e8 = 4Reω4.

Equivalently,

ω
1 = 1

2
(−e1 + i e2), ω

2 = 1
2
(e5 + i e4), ω

3 = 1
4
(−e6 + i e7), ω

4 = 1
4
(e8 + 2i e3).

1 Notation: ωij = ωi ∧ ωj and ωik̄ = ωi ∧ ω k̄, where ω k̄ is the conjugate of ωk .
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Then, for any (a, b) ∈ R2, one has a real nilpotent Lie algebra ga,b de�ned by the following structure
equations coming from (3):

ga,b ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

de1 = de2 = de3 = 0,

de4 = e13,

de5 = e23,

de6 = 3 e14 + e25 − 2 e35,

de7 = 2 a e12 + e15 + e24 + 2 e34,

de8 = −2b e14 + e16 − 2b e25 + e27 − 2 e45,

(4)

where eij = ei ∧ ej. The integrable almost complex structure on ga,b is expressed in this real basis as

Ja,b(e1) = e2, Ja,b(e3) = 1
2
e8, Ja,b(e4) = e5, Ja,b(e6) = e7. (5)

In the next lines, we will prove the following result:

Proposition 3.1. If the nilpotent Lie algebras ga,b and ga′ ,b′ are isomorphic, then there is a non-zero real number
ρ such that

a′ = ± ρ a, and b′ = ρ b.

As a consequence, we are able to provide a positive answer to Question 1.1:

Theorem 3.2. The real Lie algebras ga,1, a ∈ [0,∞), de�ne a family of pairwise non-isomorphic nilpotent Lie
algebras admitting complex structures.

Proof. Using Proposition 3.1 for b′ = b = 1 and for non-negative values of a and a′, we see that if ga,1 is
isomorphic to ga′ ,1 then ρ = 1 and a′ = a. Hence, di�erent values of a in [0,∞) produce non-isomorphic Lie
algebras ga,1. Since Ja,1 in (5) is an integrable almost complex structure on ga,1, any nilpotent Lie algebra in
this family has complex structures.

Remark 3.3. Any Lie algebra ga,b is isomorphic to one and only one of the following: g0,0, g1,0, or ga,1, with
a ∈ [0,∞). Indeed:
– If a ≠ 0 and b = 0, then ga,0 is isomorphic to g1,0. In fact, it is enough to apply to the equations (4) the

isomorphism given by diag (a−1, a−1, a−1, a−2, a−2, a−3, a−3, a−4) ∈ GL(8,R).
– If b ≠ 0, then the Lie algebra ga,b is isomorphic to g∣ ab ∣,1. To see this, we �rst apply to the equations (4)

the transformation de�ned by diag (b−1, b−1, b−1, b−2, b−2, b−3, b−3, b−4) ∈ GL(8,R) in order to get an
isomorphism from ga,b to g a

b ,1
Now, diag (1,−1,−1,−1, 1,−1, 1,−1) gives an isomorphism between the

Lie algebras g a
b ,1

and g− a
b ,1

.
– Finally, applying Proposition 3.1 to the Lie algebras g0,0, g1,0, and ga,1, a ∈ [0,∞), one concludes that any

two of them are never isomorphic.

Proof of Proposition 3.1. The rest of this section is devoted to the proof of Proposition 3.1. First, we normalize
several coe�cients in the structure equations (4) in order to get simpler equations for the Lie algebras. With
this aim, let us introduce the new basis {vi}8

i=1 given by

v1 = e1, v2 = 1√
3
e2, v3 = 2√

3
e3, v4 = 2√

3
e4,

v5 = 2
3
e5, v6 = 2

3
√

3
e6, v7 = 2

3
e7, v8 = 2

3
√

3
e8 + 4 b

9
√

3
e6.
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In terms of this basis, the structure equations (4) become

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv1 = dv2 = dv3 = 0,

dv4 = v13,

dv5 = v23,

dv6 = v14 + v25 − v35,

dv7 = α v12 + v15 + v24 + v34,

dv8 = v16 − 2β v25 + v27 − β v35 − v45,

(6)

where α = 4 a
√

3
and β = 2 b

3 . From now on, we will denote the real Lie algebra by mα,β (instead of ga,b) to
indicate that we are considering the structure equations (6) above.

We �rst observe that the algebras mα,β share the same values for the usual invariants of nilpotent Lie
algebras. More precisely, it can be seen that the dimensions of the terms in the ascending central series
are (1, 3, 5, 8), and those of the descending central series are (8, 5, 3, 1). Furthermore, the Lie algebras
cannot be distinguished by their cohomology groups (see Section 4 for more details). Hence, we are led to
directly study the existence of an isomorphism between the real Lie algebrasmα,β in this family.

Let mα,β and mα′ ,β′ be two nilpotent Lie algebras de�ned by the structure equations (6) for (α, β) and
(α′, β′), respectively. Let f ∶mα,β Ð→ mα′ ,β′ be a homomorphism of Lie algebras. Hence, the dual map
f∗∶m∗

α′ ,β′ Ð→ m∗
α,β extends to a map F∶ ⋀∗m∗

α′ ,β′ Ð→ ⋀∗m∗
α,β that commutes with the di�erentials, i.e.

F ○ d = d ○ F.
Suppose that there exists a Lie algebra isomorphism between mα,β and mα′ ,β′ , and let {vk}8

k=1 (resp.
{v′ k}8

k=1) be a basis for m∗
α,β (resp. m∗

α′ ,β′ ) satisfying equations (6) with (α, β) (resp. (α′, β′)). In terms of
these bases, any Lie algebra isomorphism is de�ned by

F(v′ i) =
8
∑
j=1
λ
i
j v

j , i = 1, . . . , 8,

satisfying the conditions
F(dvi) = d(F(v′ i)), for each 1 ≤ i ≤ 8, (7)

where the matrix Λ = (λij)i,j=1,...,8 belongs to GL(8,R).
In what follows, we will prove that λ1

1 /= 0, and

α
′ = ±λ1

1 α, β
′ = λ1

1 β.

Notice that this result implies Proposition 3.1, since a, b, a′, b′ are related to α, β,α′, β′ by α = 4 a
√

3
, β = 2 b

3 ,
α′ = 4 a′

√
3
and β′ = 2 b′

3 .

Lemma 3.4. The elements F(v′ i) ∈ m∗
α,β satisfy the following conditions:

F(v′ i) ∧ v123 = 0, for i = 1, 2, 3;

F(v′ i) ∧ v12345 = 0, for i = 4, 5;

F(v′ i) ∧ v1234567 = 0, for i = 6, 7.

In particular, the matrix Λ = (λij)i,j ∈ GL(8,R) that determines F is a block triangular matrix, and thus

det(λij)i,j=1,2,3 ⋅ det(λij)i,j=4,5 ⋅ det(λij)i,j=6,7 ⋅ λ8
8 = detΛ ≠ 0.

Proof. First, we observe that from the equations (6), the equalities (7) for i = 1, 2, 3 simply read as d(F(v′ i)) =
0. Performing this calculation, one immediately gets

λ
i
j = 0, for 1 ≤ i ≤ 3 and 4 ≤ j ≤ 8, (8)
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and thus we have F(v′ i) ∈ ⟨v1, v2, v3⟩, or equivalently F(v′ i) ∧ v123 = 0, for i = 1, 2, 3.
Bearing in mind the values (8), one can see that (7) for i = 4, 5 can be written as

0 = d(F(v′ i)) − F(dv′ i) = (λi−3
2 λ

3
1 − λi−3

1 λ
3
2 + αλi7) v12 + (λi−3

3 λ
3
1 − λi−3

1 λ
3
3 + λi4) v13

+ λi6 v14 + λi7 v15 + λi8 v16 + (λi−3
3 λ

3
2 − λi−3

2 λ
3
3 + λi5) v23 + λi7 v24

+ (λi6 − 2β λi8) v25 + λi8 v27 + λi7 v34 − (λi6 + β λi8) v35 − λi8 v45.

(9)

As a consequence, the vanishing of the coe�cients in v13, v14, v15, v16, and v23, implies that λi6 = λi7 = λi8 = 0,
and

λ
i
4 = λi−3

1 λ
3
3 − λi−3

3 λ
3
1, λ

i
5 = λi−3

2 λ
3
3 − λi−3

3 λ
3
2, for i = 4, 5. (10)

Therefore, F(v′ i) ∈ ⟨v1, . . . , v5⟩, for i = 4, 5, as desired. Note that (10) will be used again in the proof of the
next lemma.

Let us now consider i = 6, 7 in the equalities (7). It is easy to check that

d(F(v′ i)) − F(dv′ i) = λi8 v16 + ξi ,

where ξi ∈ ⟨v16⟩⊥ ⊂ ⋀2⟨v1, . . . , v8⟩. Here, and inwhat follows, the orthogonal is takenwith respect to the inner
product in⋀2⟨v1, . . . , v8⟩ de�ned by declaring the standard basis {vi j}1≤i<j≤6 to be orthonormal. Therefore,
the equalities (7) for i = 6, 7 in particular imply

λ
6
8 = λ7

8 = 0.

Hence, F(v′ i) ∈ ⟨v1, . . . , v7⟩, for i = 6, 7, and the proof of the lemma is complete.

We now make use of Lemma 3.4 to prove the following sharper result.

Lemma 3.5. The elements F(v′ i) ∈ m∗
α,β additionally satisfy F(v′ i) ∧ vi = 0, for i = 1, 2, 3, and

F(v′ 4) ∧ v1234 = 0, F(v′ 5) ∧ v1235 = 0, F(v′ 6) ∧ v123456 = 0, and F(v′ 7) ∧ v123457 = 0.

Therefore, Λ = (λij)i,j ∈ GL(8,R) is a lower triangular matrix, and

8
∏
i=1
λ
i
i = detΛ ≠ 0.

Proof. Let us �rst recall that all the conditions in Lemma 3.4 and those included along its proof must be
satis�ed in order to ensure that F is an isomorphism of Lie algebras.

A direct calculation shows that

d(F(v′ 8)) − F(dv′ 8) = − (λ1
3 λ

6
6 + λ2

3 λ
7
6) v36 − (λ1

3 λ
6
7 + λ2

3 λ
7
7) v37 + ξ,

where ξ ∈ ⟨v36, v37⟩⊥ ⊂ ⋀2⟨v1, . . . , v8⟩. Now, the condition (7) for i = 8 implies the vanishingof the coe�cients
in v36 and v37 above, so the following homogeneous system must be satis�ed:

(λ
6
6 λ

7
6

λ6
7 λ

7
7
)(λ

1
3
λ2

3
) = (0

0
) .

Since by Lemma 3.4 one has det(λij)i,j=6,7 /= 0, we conclude that λ1
3 = λ2

3 = 0. Therefore,

F(v′ i) ∈ ⟨v1, v2⟩, for i = 1, 2. (11)

By the equations (9) for i = 4, 5, one observes that the vanishing of the coe�cient in the term v12 gives the
following homogeneous system

(λ
1
2 −λ1

1
λ2

2 −λ2
1
)(λ

3
1
λ3

2
) = (0

0
) .
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By Lemma 3.4 and (11) we get det(λij)i,j=1,2 ⋅ λ3
3 = det(λij)i,j=1,2,3 /= 0, hence λ3

1 = λ3
2 = 0. Consequently,

F(v′ 3) ∈ ⟨v3⟩, (12)

as stated in the lemma. Now, (10) reduces to

λ
4
4 = λ1

1 λ
3
3, λ

4
5 = λ1

2 λ
3
3, λ

5
4 = λ2

1 λ
3
3, λ

5
5 = λ2

2 λ
3
3. (13)

A direct computation bearing in mind (11) and (12) gives

d(F(v′ 6)) − F(dv′ 6) = (λ6
6 − λ1

2 λ
4
5 − λ2

2 λ
5
5) v25 + (λ6

7 + λ3
3 λ

5
4) v34 − (λ6

6 − λ3
3 λ

5
5) v35 + ϑ1,

d(F(v′ 7)) − F(dv′ 7) = (λ7
6 − λ1

2 λ
5
5 − λ2

2 λ
4
5) v25 + (λ7

7 − λ3
3 λ

4
4) v34 − (λ7

6 + λ3
3 λ

4
5) v35 + ϑ2,

where ϑ1, ϑ2 ∈ ⟨v25, v34, v35⟩⊥ ⊂ ⋀2⟨v1, . . . , v8⟩. Therefore, the equalities (7) for i = 6, 7 in particular imply
that the coe�cients in v34 and v35 above are zero, and using (13) we obtain

λ
6
6 = λ2

2 (λ3
3)2, λ

6
7 = −λ2

1 (λ3
3)2, λ

7
6 = −λ1

2 (λ3
3)2, λ

7
7 = λ1

1 (λ3
3)2. (14)

Furthermore, the coe�cients in v25 must also vanish, so taking into account (13) together with the fact that
λ3

3 ≠ 0, we arrive at the following equations:

(λ1
2)2 + (λ2

2)2 − λ2
2 λ

3
3 = 0, λ

1
2 (λ3

3 + 2λ2
2) = 0.

We observe that λ1
2 = 0. Indeed, if λ1

2 is non-zero, then the second expression gives λ3
3 = −2λ2

2 and replacing
it in the �rst one, we arrive at det(λij)i,j=1,2 = 0, which is a contradiction. Hence, one must have λ1

2 = 0, which
in turn implies λ4

5 = λ7
6 = 0 and thus allows us to ensure that

F(v′ 1) ∈ ⟨v1⟩, F(v′ 4) ∈ ⟨v1, . . . , v4⟩, and F(v′ 7) ∈ ⟨v1, . . . , v5, v7⟩,

as desired. In particular, λ1
1 /= 0.

Finally, using (13) we get

d(F(v′ 7)) − F(dv′ 7) = −(λ1
1 λ

5
4 + λ2

1 λ
4
4) v14 + ζ = −2λ1

1 λ
2
1 λ

3
3 v14 + ζ ,

where ζ ∈ ⟨v14⟩⊥ ⊂ ⋀2⟨v1, . . . , v8⟩. Now, the equality (7) for i = 7 implies λ2
1 = 0, and consequently, also

λ5
4 = λ6

7 = 0. Therefore,

F(v′ 2) ∈ ⟨v2⟩, F(v′ 5) ∈ ⟨v1, v2, v3, v5⟩, and F(v′ 6) ∈ ⟨v1, . . . , v6⟩,

concluding the proof of the lemma.

We next make use of the previous result to relate the values of the parameters (α, β) and (α′, β′).

Lemma 3.6. If the nilpotent Lie algebrasmα,β andmα′ ,β′ are isomorphic, then

α
′ = ±λ1

1 α, β
′ = λ1

1 β.

Proof. Let us �rst recall that all the conditions in Lemma 3.5 and in its proof must be satis�ed in order to have
an isomorphism F of the Lie algebrasmα,β andmα′ ,β′ . In particular, the expressions (13) and (14) are reduced
to

λ
4
4 = λ1

1 λ
3
3, λ

5
5 = λ2

2 λ
3
3, λ

6
6 = λ2

2 (λ3
3)2, λ

7
7 = λ1

1 (λ3
3)2. (15)

In order to prove the lemma, we need to study more deeply the conditions (7) for i = 6, 7, 8 (notice that (7)
are trivially ful�lled for 1 ≤ i ≤ 5).

Let us start with i = 6. A direct computation applying (15) gives us

d(F(v′ 6)) − F(dv′ 6) = λ3
3 [λ2

2 λ
3
3 − (λ1

1)2] v14 + λ2
2 λ

3
3 (λ3

3 − λ2
2 ) v25 + ξ,
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where ξ ∈ ⟨v14, v25⟩⊥ ⊂ ⋀2⟨v1, . . . , v8⟩. Since λ2
2 λ

3
3 ≠ 0, from the condition (7) for i = 6 it follows that λ3

3 = λ2
2

and (λ2
2)2 = (λ1

1)2, that is,
λ

3
3 = λ2

2 = ±λ1
1. (16)

Let us remark that this greatly simpli�es (15), which reduces to

λ
4
4 = ±(λ1

1)2, λ
5
5 = (λ1

1)2, λ
6
6 = ±(λ1

1)3, λ
7
7 = (λ1

1)3. (17)

Furthermore, the conditions (7) for i = 6, 7 become

0 = d(F(v′ 6)) − F(dv′ 6) = − λ1
1 [λ4

2 ∓ λ5
1] v12 + [λ6

4 − λ1
1 (λ4

3 ± λ5
1)] v13 + [λ6

5 ∓ λ1
1 (λ5

2 + λ5
3)] v23,

0 = d(F(v′ 7)) − F(dv′ 7) = − λ1
1 [λ5

2 ∓ λ4
1 − λ1

1 (αλ1
1 ∓ α′)] v12 + [λ7

4 − λ1
1 (λ5

3 ∓ λ4
1)] v13

+ [λ7
5 ± λ1

1 (λ4
2 − λ4

3)] v23.

Hence, it is easy to see that

λ
5
1 = ±λ4

2, λ
6
4 = λ1

1 (λ4
3 + λ4

2), λ
7
4 = λ1

1 (λ5
3 ∓ λ4

1),

λ
5
2 = ±λ4

1 + λ1
1 (αλ1

1 ∓ α′), λ
6
5 = λ1

1 [λ4
1 ± λ5

3 − λ1
1(α′ ∓ αλ1

1)] , λ
7
5 = ±λ1

1 (λ4
3 − λ4

2).
(18)

Let us note that this makes the conditions (7) to be satis�ed for every 1 ≤ i ≤ 7, so we must turn our attention
to i = 8. Using (16) and (17), we compute

d(F(v′ 8)) − F(dv′ 8) = [λ8
6 − λ1

1 (λ6
4 ± λ1

1 λ
5
1)] v14 + [λ8

7 ∓ λ1
1 (λ7

4 + λ1
1 λ

5
2)] v24

+ [λ8
6 − 2β λ8

8 + λ1
1 (∓λ7

5 + λ1
1 (λ4

2 ± 2β′ λ1
1))] v25 + [λ8

7 ∓ λ5
3 (λ1

1)2] v34

− [λ8
6 + β λ8

8 − (λ1
1)2 (λ4

3 ± β′ λ1
1)] v35 − [λ8

8 ∓ (λ1
1)4] v45 + ϑ,

whereϑ ∈ ⟨v14, v24, v25, v34, v35, v45⟩⊥ ⊂ ⋀2⟨v1, . . . , v8⟩. Equalling to zero the coe�cients in v14, v34, and v45,
and bearing in mind (18), one has

λ
8
6 = (λ1

1)2 (λ4
3 + 2λ4

2), λ
8
7 = ±λ5

3 (λ1
1)2, λ

8
8 = ±(λ1

1)4.

Moreover, from these equalities together with the vanishing of the coe�cient in v35, it is easy to see that

λ
4
2 = ±

λ1
1

2
(β′ − β λ1

1).

We now replace all these values in the coe�cients of v24 and v25. Their annihilation gives us the desired
relation between (α, β) and (α′, β′).

As we observed above, Lemma 3.6 implies Proposition 3.1 with ρ = λ1
1 /= 0, because a, b, a′, b′ are related to

α, β,α′, β′ by α = 4 a
√

3
, β = 2 b

3 , α′ = 4 a′
√

3
and β′ = 2 b′

3 .

4 An in�nite family of nilmanifolds Na with complex structures
In this section we show how the results of the previous section allow us to conclude that in dimension eight
there exist in�nitely many real homotopy types of nilmanifolds admitting complex structures.

Let us start reviewing some results aboutminimalmodels and homotopy theory of nilmanifolds. Sullivan
showed in [26] that it is possible to associate to any nilpotent CW-complex X a minimal model, i.e. a
commutative di�erential graded algebra, cdga, (⋀VX , d) de�ned over the rational numbers Q satisfying a
certain minimality condition, which encodes the rational homotopy type of X [12].

Recall that a space X is nilpotent if its fundamental group π1(X) is a nilpotent group and acts in a
nilpotent way on the higher homotopy groups πk(X) for k > 1. These conditions are ful�lled when the space
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is a nilmanifold N, i.e. N = Γ /G is a compact quotient of a connected, simply connected, nilpotent Lie group
G by a lattice Γ of maximal rank. Indeed, for any nilmanifold N one has π1(N) = Γ , hence nilpotent, and
πk(N) = 0 for every k ≥ 2.

A commutative di�erential graded algebra (⋀V , d) de�ned overK (= Q orR) is said to beminimal if the
following conditions are satis�ed:

(i) ⋀V is the free commutative algebra generated by the graded vector space V = ⊕Vk;
(ii) there exists a basis {xj}j∈J, for some well-ordered index set J, such that deg(xi) ≤ deg(xj) if i < j, and

each dxj is expressed in terms of preceding xi (i < j).

Given a di�erentiable manifold M, a K-minimal model of M is a minimal cdga (⋀V , d) over K together
with a quasi-isomorphism φ from (⋀V , d) to the K-de Rham complex of M, i.e. a morphism φ inducing
an isomorphism on cohomology. Note that the K-de Rham complex of M is the usual de Rham complex
of di�erential forms when K = R, whereas for K = Q one considers the Q-polynomial forms instead. Two
manifoldsM1 andM2 have the sameK-homotopy type if and only if theirK-minimal models are isomorphic
[4, 26]. Clearly, ifM1 andM2 have di�erent real homotopy types, thenM1 andM2 also have di�erent rational
homotopy types.

Let N = Γ /G be a nilmanifold of dimension n and denote by g the Lie algebra of G. The minimal model
of N = Γ /G is given by the Chevalley-Eilenberg complex (⋀ g∗, d) of the nilpotent Lie algebra g. Indeed,
according to Mal’cev [19], the existence of the lattice Γ of maximal rank in G is equivalent to the nilpotent Lie
algebra g being rational. The latter condition is in turn equivalent to the existence of a basis {e1, . . . , en} for
the dual g∗ for which the structure constants are rational numbers. Since the Lie algebra g is nilpotent, one
can take a basis {e1, . . . , en} for g∗ as above satisfying

de1 = de2 = 0, dej = ∑
i,k<j

ajik e
i ∧ ek for j = 3, . . . , n,

where ajik ∈ Q. Therefore, the cdga (⋀ g∗, d) over Q is minimal, because it satis�es (i) and (ii) just taking
J = {1, . . . , n} and V = V1 = ⟨x1, . . . , xn⟩ = ∑n

j=1 Qxj, where xj = ej for 1 ≤ j ≤ n. That is to say, there are n
generators x1, . . . , xn of degree 1, and one has theQ-minimal cdga

(⋀⟨x1, . . . , xn⟩, d ). (19)

Now, the cdga (⋀ g∗, d) over R is also minimal, since it is given by

(⋀⟨x1, . . . , xn⟩ ⊗R, d ). (20)

Nomizu proved in [21] that the canonical morphism φ from the Chevalley-Eilenberg complex (⋀ g∗, d) to the
de Rham complex (Ω∗(Γ /G), d) induces an isomorphism on cohomology. Therefore, the R-minimal model
of the nilmanifold N = Γ /G is given by (20). As it was observed by Hasegawa in [13], the cdga (19) is also the
Q-minimal model of N. Moreover, by using a result in [4] asserting that aK-minimal model,K = Q or R, of a
compact birational Kähler manifold is formal, Hasegawa proved that an even-dimensional nilmanifold does
not admit any Kähler metric unless it is a torus, by showing that the minimal model (19) is never formal. (For
more results on rational homotopy theory see [8], and for more applications to symplectic geometry see [22].)

It is proved in [1] that, up to dimension 5, the number of rational homotopy types of nilmanifolds is �nite.
However, in six dimensions the following result holds:

Theorem 4.1 ([1, Theorem 2]). There are 34 real homotopy types of 6-dimensional nilmanifolds, and in�nitely
many rational homotopy types of 6-dimensional nilmanifolds.

As an obvious consequence, there is a �nite number of real homotopy types of 6-dimensional nilmanifolds
admitting a complex structure. In what follows, we will show that for nilmanifolds with complex structures
in eight dimensions there are in�nitely many real homotopy types. To see this, let us take a non-negative
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rational number a and consider the connected, simply connected, nilpotent Lie group Ga corresponding to
the nilpotent Lie algebra ga,1 given in Section 3. It follows from (4) that the algebra ga,1 is rational, hence
by Mal’cev [19], there exists a lattice Γa of maximal rank in Ga. We denote by Na = Γa/Ga the corresponding
compact quotient. The nilmanifold Na admits complex structures, for instance, the strongly non-nilpotent
complex structure Ja,1 de�ned in (5) for b = 1.

Now, as we explained above, the R-minimal model of the nilmanifold Na is given by the Chevalley-
Eilenberg complex (⋀ g∗a,1, d) of the nilpotent Lie algebra ga,1. As a consequence of Theorem 3.2, one has
that two suchR-minimalmodels are isomorphic if and only if a = a′. Therefore, we have proved the following
result:

Theorem 4.2. There are in�nitely many real homotopy types of 8-dimensional nilmanifolds admitting a
complex structure.

A direct calculation using Nomizu’s theorem [21] allows to explicitly compute the de Rham cohomology
groups of any nilmanifold Na. In our case, we have:

H1
dR(Na) = ⟨ [e1], [e2], [e3] ⟩,

H2
dR(Na) = ⟨ [e12], [e14], [e25], [e34] ⟩,

H3
dR(Na) = ⟨ [e147], [e257 − 2 e346], [3 e146 − e256+ 2 e356], [e156+ e246 − 2 e346],

[3 e157 + 3 e247 + 2 e256 + 2 e356], [2 e126 + 3 e128 + 4 e237 − 2 e256], [2a e237 − e346 − e357] ⟩.

By Poincaré duality, the following Betti numbers for Na are obtained:

b0(Na) = b8(Na) = 1, b1(Na) = b7(Na) = 3, b2(Na) = b6(Na) = 4, b3(Na) = b5(Na) = 7.

The Betti number b4(Na) can be computed by taking into account that the Euler characteristic χ of a
nilmanifold always vanishes. Hence,

0 = χ(Na) =
8
∑
k=0

(−1)kbk(Na) = b4(Na) + 2 (b0(Na) − b1(Na) + b2(Na) − b3(Na)) ,

which implies b4(Na) = 10.
The second de Rham cohomology group provides the following additional geometric information on the

nilmanifolds Na.

Proposition 4.3. For each non-negative rational number a, the nilmanifold Na does not admit any symplectic
structure.

Proof. It is enough to see that any de Rham cohomology class a in H2
dR(Na) is degenerate. Indeed, since

a = λ1[e12] + λ2[e14] + λ3[e25] + λ4[e34] it is clear that the cup product a ∪ a ∪ a vanishes, so a4 ≡ 0 and a is
degenerate.

In contrast to this result, in the following section we will show that these nilmanifolds have many special
Hermitian metrics.

5 Special metrics on the nilmanifolds Na

We here study the existence of special Hermitian metrics on the nilmanifolds Na endowed with the strongly
non-nilpotent complex structures given in the previous sections. More concretely, we �nd many generalized
Gauduchon metrics as well as balanced Hermitian metrics.

Let us start by recalling the de�nition and the main properties of the k-th Gauduchon metrics studied
in [10].
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De�nition 5.1 ([10]). Let X = (M, J) be a compact complex manifold of complex dimension n, and let k be an
integer such that 1 ≤ k ≤ n −1. A J-Hermitian metric g on X is called k-th Gauduchon if its fundamental 2-form
F satis�es the condition ∂∂̄Fk ∧ Fn−k−1 = 0.

Clearly, any SKT metric (a J-Hermitian metric g with fundamental form F satisfying ∂∂̄F = 0) is a 1-st
Gauduchonmetric, and any astheno-Kählermetric (i.e. a J-Hermitianmetric g such that its fundamental form
F satis�es the condition ∂∂̄Fn−2 = 0) is an (n − 2)-th Gauduchon metric. SKT, resp. astheno-Kähler, metrics
were �rst introduced by Bismut in [2], resp. by Jost and Yau in [15], and they have been further studied by
many authors. Notice that for k = n − 1 one gets the standard metrics found in [11].

In [10] an extension of Gauduchon’s result for standard metrics is proved. More concretely, it is shown
in [10, Corollary 4] that if (M, J, F) is an n-dimensional compact Hermitian manifold, then for any integer
1 ≤ k ≤ n − 1, there exists a unique constant γk(F) and a (unique up to a constant) function v ∈ C∞(M) such
that

i
2
∂∂̄(evFk) ∧ Fn−k−1 = γk(F)evFn .

If (M, J, F) is Kähler, then γk(F) = 0 and v is a constant function for any 1 ≤ k ≤ n − 1. Moreover, for any
Hermitian metric on a compact complex manifold one has γn−1(F) = 0.

The constant γk(F) depends smoothly on F (see [10, Proposition 9]). Furthermore, it is proved in [10,
Proposition 8] that γk(F) = 0 if and only if there exists a k-th Gauduchon metric in the conformal class of F.

Some compact complex manifolds with generalized Gauduchon metrics are constructed in [9, 10, 14, 17]
by di�erent methods. In the following result we �nd many generalized Gauduchon nilmanifolds of complex
dimension 4.

As in Section 4, for each non-negative rational number a, we consider the nilmanifold Na endowed
with the complex structure given by (5) for b = 1, i.e. with the complex structure Ja,1. Hence, (Na , Ja,1) is
a compact complex manifold of complex dimension 4. We will denote this complex nilmanifold by Xa, i.e.
Xa = (Na , Ja,1).

Theorem 5.2. For each non-negative rational number a, the complex nilmanifold Xa has a k-th Gauduchon
metric, for every 1 ≤ k ≤ 3. Therefore, there are in�nitely many real homotopy types of 8-dimensional k-th
Gauduchon nilmanifolds, for every 1 ≤ k ≤ 3.

Proof. By Theorem 4.2, we know that the nilmanifolds Na and Na′ have di�erent real homotopy types for
a /= a′. The complex structure equations for Xa = (Na , Ja,1) are given by (3) with b = 1, i.e.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dω1 = 0,
dω2 = −ω14 + ω14̄,
dω3 = aω11̄ − i (ω12 − ω12̄ − ω21̄) + i (ω24 − ω24̄),
dω4 = i (ω12̄ + ω21̄) + ω13̄ + iω22̄ − ω31̄.

(21)

We de�ne the (1, 1)-form F on Xa given by

F = 101
4

iω11̄ + iω22̄ + iω33̄ + 1
2
iω44̄ − 5ω13̄ + 5ω31̄.

It is easy to check that F de�nes apositive-de�nitemetric on Xa, hence aHermitianmetric onXa. Furthermore,
a direct calculation using the structure equations (21) shows that

∂∂̄F = − 4 iω121̄2̄ − (1 − 6 i)ω121̄3̄ + aω121̄4̄ − (1 − i)ω122̄3̄ + (1 + 6 i)ω131̄2̄ − iω131̄3̄

− ω132̄3̄ − aω141̄2̄ − 12 iω141̄4̄ + ω143̄4̄ + (1 + i)ω231̄2̄ + ω231̄3̄ − 2 iω242̄4̄ − ω341̄4̄.

Therefore, one has ∂∂̄F ∧ F2 = 0 for any a, i.e. F is a 1-st Gauduchon metric on the complex nilmanifold Xa

for any a.
By [16, Proposition 2.2], if an invariant Hermitian metric F on a complex nilmanifold X of complex

dimension n ≥ 4 is k-th Gauduchon for some 1 ≤ k ≤ n − 2, then it is k-th Gauduchon for any other k.
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Since any invariant Hermitian metric is (n − 1)-Gauduchon, we conclude that the 1-st Gauduchon metric on
Xa constructed above are also k-th Gauduchon for k = 2, 3.

By a direct calculation it can be proved that the compact complexmanifolds Xa are not SKT (see [7] for general
results) and, moreover, that the manifolds Xa do not admit any invariant astheno-Kähler metric.

A particularly interesting class of standard metrics is the one given by balanced Hermitian metrics,
de�ned by the condition dFn−1 = 0. Important aspects of these metrics were �rst investigated by Michelsohn
in [20], and many authors have constructed balanced manifolds and studied their properties since then. In
the following result we �nd many balanced nilmanifolds of complex dimension 4.

Theorem 5.3. For each non-negative rational number a, the complex nilmanifold Xa has a balancedHermitian
metric. Therefore, there are in�nitely many real homotopy types of 8-dimensional balanced nilmanifolds.

Proof. Wewill de�ne a balanced Hermitianmetric on Xa = (Na , Ja,1) depending on the values of the rational
number a.

For a = 0, we consider the (1, 1)-form F on X0 given by

2 F0 = i (2ω11̄ + ω22̄ + 4ω33̄ + ω44̄) + 2ω13̄ − 2ω31̄.

Hence, F0 de�nes a positive-de�nite metric on X0. Since F0 is real, the closedness of F3
0 is equivalent to the

condition
∂F0 ∧ F2

0 = 0.

Using the structure equations (21) for a = 0, we get

2 ∂F0 = 4ω123̄ − 4ω132̄ + (i − 1)ω142̄ + iω143̄ − 4ω231̄

−(i + 1)ω241̄ − ω242̄ − 4ω243̄ − iω341̄ − 4ω342̄.

One can check that ∂F0∧F2
0 = 0, i.e. dF3

0 = 0, so F0 is a balancedHermitianmetric on the complex nilmanifold
X0.

For any rational number a > 0, we de�ne the (1, 1)-form Fa on Xa given by

2 Fa = i (a(a + 1)ω11̄ + ω22̄ + ω33̄ + 2ω44̄) + aω13̄ − aω31̄ + ω24̄ − ω42̄.

It is clear that Fa de�nes a Hermitian metric on Xa (a > 0). A direct calculation using the structure
equations (21) shows that

2 ∂Fa = iω122̄ + 2ω123̄ − aiω131̄ − ω132̄ − (2 − i(a − 1))ω142̄ + 2iω143̄

−ω144̄ − (2 + i(a − 1))ω241̄ − 2ω242̄ − ω243̄ − 2iω341̄ − ω342̄.

Moreover, one can check that ∂Fa ∧ F2
a = 0, and consequently dF3

a = 0. Therefore, Fa is a balanced metric on
the complex nilmanifold Xa for any positive rational number a.

In [23, 24] Popovici has introduced and investigated the class of strongly Gauduchon metrics F, which are
de�ned by the condition ∂Fn−1 = ∂̄γ, for some complex form γ of bidegree (n, n − 2) on a compact complex
manifold X of complex dimension n. It is clear by de�nition that any balancedmetric is strongly Gauduchon,
and any strongly Gauduchon metric is standard.

Hence, as an immediate consequence of Theorem 5.3 we get:

Corollary 5.4. There are in�nitely many real homotopy types of 8-dimensional strongly Gauduchon nilmani-
folds.

It is well known that the existence of a Kähler metric on an even dimensional nilmanifold reduces the
nilmanifold to be a torus, so the underlying Lie algebra is abelian and the minimal model is formal [13].
More generally, it seems natural to ask if the existence of other geometric structures on nilmanifolds imposes
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some restriction on their real homotopy type. For instance, as mentioned in the introduction, it is an inter-
esting question if the number of real homotopy types of 8-dimensional nilmanifolds admitting an invariant
hypercomplex structure is �nite or not. In addition to this problem, the answers to the following questions
are, to our knowledge, unknown:

Question A. Are there in�nitely many real homotopy types of 8-dimensional SKT nilmanifolds?

Question B. Are there in�nitely many real homotopy types of 8-dimensional astheno-Kähler nilmanifolds?
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