Krzysztof Witczyński

GENERALIZED PAPPUS’ THEOREM

Abstract. The paper contains a generalization to the n-dimensional projective space over a commutative field of a famous theorem of Pappus.

The well-known theorem of Pappus, as one of the most important theorems of the projective geometry, was a subject of many investigations. We may mention here for instance the works [1], [2], [3] and [4], where this theorem was generalized to the n-dimensional projective space P^n (projective space over an arbitrary commutative field). In particular, the generalization from [1] concerns two sets of points $A = \{a_0, \ldots, a_n\}$ and $B = \{b_0, \ldots, b_n\}$ on two hyperplanes H_1 and H_2, respectively. The theorem says that the dimension of the join of subspaces (points in general) S_0, \ldots, S_n is not greater than $n - 1$ ($S_j = \bigcap_{i=0, i\neq j}^{n} S_{ij}$, where $S_{ij} = J(b_i, A \setminus \{a_i, a_j\})$, $i \neq j$ (the symbol $J(P_1, \ldots, P_m)$ denotes the join of subspaces P_1, \ldots, P_m). Points a_0, \ldots, a_n as well as b_0, \ldots, b_n are assumed to be in a general position i.e. no n of them are in an $(n-2)$-dimensional subspace. Obviously, when $n = 2$, it is the usual plane Pappus’ theorem. In this work we present a more general theorem than that from [1]. Throughout the paper we investigate two sets of points $A = \{a_0, \ldots, a_n\}$ and $B = \{b_0, \ldots, b_n\}$ such that $\dim J(A) = n - 1$, $\dim J(B) = k$, $1 \leq k \leq n - 1$, and points a_0, \ldots, a_n as well as b_0, \ldots, b_n are in a general position (no $k+1$ points of b_0, \ldots, b_n are in a $(k-1)$-dimensional subspace). Then we shall show that $\dim J(S_0, \ldots, S_n) \leq k$. First we prove

Lemma 1. If points b_0, \ldots, b_m ($0 \leq m \leq k - 1$) are in $H_1 = J(A)$, then $\dim J(S_0, \ldots, S_n) \leq \max(1, m)$.

Proof. First suppose $b_0 \in H_1$ and $b_i \notin H_1$ for $i = 1, \ldots n$. Then [1] $S_j = a_0$ (when $b_0 \notin J(A \setminus \{a_0, a_j\}$) or $S_j = \emptyset$ (when $b_0 \in J(A \setminus \{a_0, a_j\}$) for all $j = 1, \ldots, n$. Since $\dim S_0 = 0$, $\dim J(S_0, \ldots, S_n) = 1$.

2000 Mathematics Subject Classification: 51M04, 51M20.

Key words and phrases: Pappus theorem, projective space, commutativity.
Let now $m \geq 1$. For $j \leq m$, $S_j = A_j \cap B_j$, where $A_j = \bigcap_{i=0, i \neq j}^{n} S_{ij}$, $B_j = \bigcap_{i=m+1}^{n} S_{ij}$. Notice that $\{a_0, \ldots, a_m\} \subseteq B_j$ and $\dim B_j = m$. Hence $B_j \cap H_1 = J(\{a_0, \ldots, a_m\} \setminus \{a_j\})$. Since $A_j \subseteq H_1$, $S_j \subseteq J(a_0, \ldots, a_m)$. On the other hand, for $j > m + 1$, $S_j = C_j \cap D_j$, where $C_j = \bigcap_{i=0}^{m} S_{ij}$, $D_j = \bigcap_{i=m+1}^{n} S_{ij}$. We have $\{a_0, \ldots, a_m\} \subseteq D_j$, $\dim D_j = m + 1$ and, consequently, $\dim (D_j \cap H_1) = m$. It means that $D_j \cap H_1 = J(a_0, \ldots, a_m)$. As in the previous case $C_j \subseteq H_1$, hence $S_j \subseteq J(a_0, \ldots, a_m)$. Thus we see that $J(S_0, \ldots, S_n) \subseteq J(a_0, \ldots, a_m)$. This ends the proof. ■

Lemma 2. Let $A = \{a_0, \ldots, a_n\}$ and $B = \{b_0, \ldots, b_n\}$ be two sets of points on two hyperplanes H_1 and H_2, respectively. Points a_0, \ldots, a_n are assumed to be in a general position. If some of points b_i coincide, then $\dim J(S_0, \ldots, S_n) < n - 1$.

Proof. In view of Lemma 1 we may assume that $b_i \not\in H_1$ for $i = 0, \ldots, n$. Hence $\dim S_j = 0$, all j (i.e. S_j are points). Suppose e.g. $b_0 = b_1$. We have $S_{01} = J(b_0, a_2, \ldots, a_n) = S_{10} = J(b_1, a_2, \ldots, a_n)$. Hence $S_0, S_1 \in S_{01}$. Observe that for $j \geq 2$, $S_j \in J(b_0, \{a_2, \ldots, a_n\} \setminus \{a_j\}) \subseteq S_{01}$. ■

Let now $A = \{a_0, \ldots, a_n\}$ and $B = \{b_0, \ldots, b_n\}$ be two sets of points in a general position such that $b_i \notin J(A)$ for all i, and $\dim J(A) = n - 1$, $\dim J(B) = k$, $1 \leq k \leq n - 2$. There are, among points a_i, at least $n - k + 1$ not belonging to $J(B) = H_2$. We choose $n - k - 1$, say a_0, \ldots, a_{n-k-2}, from them in such a way that $\dim J(a_0, \ldots, a_n, b_{n-k-2}, H_2) = n - 1$.

Lemma 3. There are, in $\overline{H}_2 = J(a_0, \ldots, a_{n-k-2}, B)$, points c_{k+1}, \ldots, c_n such that points $\overline{b}_0, \ldots, \overline{b}_n$ are in a general position, where $\overline{b}_i = b_i$ for $i = 0, \ldots, k$, $\overline{b}_i = c_i$ for $i = k + 1, \ldots, n$, and $\overline{S}_j = S_j$ for $j = n - k - 1, \ldots, n$ ($\overline{S}_j = \bigcap_{i=0, i \neq j}^{n} S_{ij}$, $\overline{S}_j = J(\overline{b}_i, A \setminus \{a_i, a_j\}$).

Proof. We choose a point $c_{k+1+i} \neq b_{k+1+i}$, a_i on a line $l_i = J(a_i, b_{k+1+i})$, $i = 0, \ldots, n - k - 2$. Obviously, $c_{k+1} \notin H_2$, $c_{k+2} \notin H_3 = J(H_2, c_{k+1}), \ldots, c_{n-1} \notin H_{n-k-2} = J(H_{n-k-3}, c_{n-2})$. Thus we have n linearly independent points $b_0, \ldots, b_k, c_{k+1}, \ldots, c_{n-1}$ which are vertices of an $(n - 1)$-dimensional simplex S contained in \overline{H}_2. Consider the $(n - k - 1)$-dimensional subspace G determined by points $a_0, \ldots, a_{n-k-2}, b_n$. G cuts the faces of S in subspaces $G_i \cap H_i = 1, \ldots, n$. Finally we choose a point c_n in G in such a way that $c_n \notin G_i$, all i. We have still to show that $\overline{S}_j = S_j$ for $j = n - k - 1, \ldots, n$. Observe that

$$S_j = \bigcap_{i=0}^{k} S_{ij} \cap \bigcap_{i=k+1, i \neq j}^{n} S_{ij}, \quad \overline{S}_j = \bigcap_{i=0}^{k} S_{ij} \cap \bigcap_{i=k+1, i \neq j}^{n} \overline{S}_{ij}$$

for $j = n - k - 1, \ldots, n$. Unauthenticated
Download Date | 8/13/19 12:07 PM
Nevertheless, when \(k + 1 \leq i \leq n - 1 \),
\[
S_{ij} = J(a_0, \ldots, a_{n-k-2}, b_i, \{a_{n-k-1}, \ldots, a_n\} \setminus \{a_i, a_j\})
= J(a_0, \ldots, a_{n-k-2}, c_i, \{a_{n-k-1}, \ldots, a_n\} \setminus \{a_i, a_j\}) = \overline{S}_{ij},
\]
since \(c_i \in J(a_{i-k-1}, b_i) \) and points \(c_i, a_{i-k-1}, b_i \) are all distinct. If \(i = n \), then
\[
S_{nj} = J(a_0, \ldots, a_k, \{a_{k+1}, \ldots, a_{n-1}\} \setminus \{a_j\}, b_n)
= J(a_0, \ldots, a_k, \{a_{k+1}, \ldots, a_{n-1}\} \setminus \{a_j\}, c_n) = \overline{S}_{nj},
\]
since \(c_n \in J(a_0, \ldots, a_{n-2}, b_n) = G \) and \(b_n \in J(a_0, \ldots, a_{n-2}, c_n) = G \). This completes the proof.

Lemma 4. As previously, we consider two sets of points, in a general position, \(A = \{a_0, \ldots, a_n\} \) and \(B = \{b_0, \ldots, b_n\} \) such that \(\dim H_1 = \dim H_2 = n - 1 \), where \(H_1 = J(A) \), \(H_2 = J(B) \). If \(a_0, \ldots, a_{k-1} \in H_2 \) and \(b_i \notin H_1 \), all \(i \), then \(\dim J(S_k, \ldots, S_n) \leq n - k - 1 \).

Proof. Obviously, without loss of generality, we may assume that \(a_j \notin H_2 \) for \(j \geq k \). Suppose we choose in \(P^n \) an allowable coordinate system in such a way that the \(j \)-th coordinate of point \(a_i \) equals to \(\delta^j_i \), the equation of \(H_2 \) is \(\sum_{i=k}^n x_i = (1,1,\ldots,1,0) \), where \(i = 0, \ldots, n-1, j = 0, \ldots, n \), and \(\delta^j_i \) is the Kronecker \(\delta \). By \(b_{ij} \) we denote the \(j \)-th coordinate of point \(b_i \), \(i = 0, \ldots, n, j = 0, \ldots, n-1 \). Then \(b_{in} \) will equal to \(-\sum_{j=k}^{n-1} b_{ij} \). Notice that \(\sum_{j=k}^{n-1} b_{ij} \neq 0 \) for \(i = 0, \ldots, n \). Let us denote the sums \(\sum_{j=k}^{n-1} b_{ij} \), \(\sum_{j=k}^{n-1} b_{nj} \) by \(M_i \) and \(M \), respectively. One can check easily that the hyperplane \(S_{ni} \) has the equation \(x_i M_i + x_n b_{ni} = 0 \), \(i = 0, \ldots, n - 1 \). Consequently, the \(i \)-th coordinate \(s_{ni} \) of point \(S_n \) is \(b_{ii}/M_i \), \(i = 0, \ldots, n-1 \), while the \(n \)-th coordinate of this point equals to \(-1 \). Similarly, we check that hyperplane \(S_{ji} \) has the equation \((x_j - x_i) M_i + x_n (b_{ij} - b_{ii}) = 0 \), \(j = k, \ldots, n - 1, i = 0, \ldots, n - 1 \), and the equation of \(S_{jn} \) is \(x_j M + x_n b_{nj} = 0 \), \(j = 0, \ldots, n - 1 \). Hence the \(i \)-th coordinate \(s_{ji} \) of point \(S_j \) is
\[
\frac{b_{ij} - b_{ii}}{M_i} - \frac{b_{nj}}{M}, \quad i = 0, \ldots, n - 1, \quad i \neq j, \quad s_{jj} = -\frac{b_{nj}}{M}, \quad s_{jn} = 1, \quad j = k, \ldots, n - 1.
\]
Observe that
\[
(n - k) s_{ni} + \sum_{j=k}^{n-1} s_{ji} = 0 \quad \text{for} \quad i = 0, \ldots, n.
\]
It means that points \(S_k, \ldots, S_n \) are linearly dependent i.e. \(\dim J(S_k, \ldots, S_n) \leq n - k - 1 \).

Let now \(A = \{a_0, \ldots, a_n\}, B = \{b_0, \ldots, b_n\} \) be two sets of points like those described in the introduction.
THEOREM. If \(\dim J(A) = n - 1 \) and \(\dim J(B) = k \), \(1 \leq k \leq n - 1 \) and \(J(B) \not\subset J(A) \), then \(\dim J(S_0, \ldots, S_n) \leq k \).

Proof. Of course, we may consider \(k < n - 2 \). In view of Lemma 1, we may assume that \(b_i \not\in H_1 \) for \(i = 0, \ldots, n \). In fact, from \(b_0, \ldots, b_m \in H_1 \) it follows that \(\dim J(S_0, \ldots, S_n) \leq \max(1, m) \), but \(m \leq k - 1 \). Thus [1] the subspaces \(S_0, \ldots, S_n \) are points. Suppose \(\dim J(S_0, \ldots, S_n) > k \). Hence there exist \(k + 2 \) points, among \(S_0, \ldots, S_n \), say \(S_{n-k-1}, \ldots, S_n \), such that \(\dim J(S_{n-k-1}, \ldots, S_n) = k + 1 \). Take into account points \(a_0, \ldots, a_{n-k-2} \). Denote \(J(B, a_0, \ldots, a_{n-k-2}) \) by \(H_2 \). If \(\dim H_2 = n - 1 \), then by Lemma 3, there are points \(c_{k+1}, \ldots, c_n \) in \(H_2 \) such that the respective points \(S_j \) are equal to \(S_{j+k} \) for \(j = n - k - 1, \ldots, n \). According to Lemma 4, \(\dim J(S_{n-k-1}, \ldots, S_n) \leq k \), a contradiction. If \(\dim H_2 < n - 1 \), we add points \(a_{n-k-1}, \ldots, a_m \) to the points \(a_0, \ldots, a_{n-k-2} \) in such a way that \(\dim J(B, a_0, \ldots, a_m) = n - 1 \) and \(\dim J(B, a_0, \ldots, a_{m-1}) < n - 1 \). There is, among points \(a_0, \ldots, a_m \), a subset of \(n - k - 1 \) points, say \(a_{i_1}, \ldots, a_{i_{n-k-1}} \) such that \(\dim J(a_{i_1}, \ldots, a_{i_{n-k-1}}, B) = n - 1 \). Hence, Lemma 3, there exist points \(c_{k+1}, \ldots, c_n \) such that the respective points \(S_j \) are equal to \(S_j \) for \(j \not\in \{i_1, \ldots, i_{n-k-1}\} \). In particular, it has place when \(j = m+1, \ldots, n \). According to Lemma 4, \(\dim J(S_{m+1}, \ldots, S_n) \leq n - m - 2 \). It implies \(\dim J(S_m, \ldots, S_n) \leq n - m - 1 \), \(\dim J(S_{m-1}, \ldots, S_n) \leq n - m \) and so on. Finally, we obtain \(\dim J(S_{n-k-1}, \ldots, S_n) \leq k \) which contradicts with the supposition \(\dim J(S_0, \ldots, S_{n+1}) = k + 1 \). This ends the proof.

References

FACULTY OF MATHEMATICS AND INFORMATION SCIENCES
WARSAW UNIVERSITY OF TECHNOLOGY
Pl. Politechniki 1
00-661 WARSZAWA, POLAND
E-mail: kawitcz@mini.pw.edu.pl

Received May 27, 2008.