Research Article

Zhihua Wang and Reza Saadati*

Approximation of additive functional equations in NA Lie C*-algebras

https://doi.org/10.1515/dema-2018-0003
Received November 27, 2017; accepted February 9, 2018

Abstract: In this paper, by using fixed point method, we approximate a stable map of higher *-derivation in NA C*-algebras and of Lie higher *-derivations in NA Lie C*-algebras associated with the following additive functional equation

\[\sum_{i=1}^{m} T\left(u_i + \frac{1}{m} \sum_{j=1, j\neq i}^{m} u_j \right) + T\left(\frac{1}{m} \sum_{i=1}^{m} u_i \right) = 2 T\left(\sum_{i=1}^{m} u_i \right), \]

where \(m \geq 2 \).

Keywords: Fixed point method, approximation, higher *-derivations, Lie higher *-derivations, non-Archimedean Lie C*-algebras

MSC: 39B82, 39B52, 16W25, 46L05, 47H10

1 Introduction and Preliminaries

Najati and Eskandani [1] introduced the following additive functional equation

\[\sum_{i=1}^{m} T\left(u_i + \frac{1}{m} \sum_{j=1, j\neq i}^{m} u_j \right) + T\left(\frac{1}{m} \sum_{i=1}^{m} u_i \right) = 2 T\left(\sum_{i=1}^{m} u_i \right), \]

where \(m \geq 2 \).

In this paper, using some ideas from [2–4], we first introduce the notions of higher *-derivations in non-Archimedean (shortly NA) C*-algebras and Lie higher *-derivations in NA Lie C*-algebras, respectively. Furthermore, we apply the fixed point method to investigate the stability results of higher *-derivations in NA C*-algebras and of Lie higher *-derivations in NA Lie C*-algebras associated with the additive functional equation (1.1).

Following [5–8], we recall some concepts and preliminary results concerning non-Archimedean (NA) normed spaces (NA Banach algebras), which will be used in this paper.

An NA field is a field \(\mathbb{K} \) equipped with a function (valuation) \(| \cdot | \) from \(\mathbb{K} \) into \([0, \infty) \) such that \(|r| = 0 \) if and only if \(r = 0 \), \(|rs| = |r||s| \), and \(|r + s| \leq \max\{ |r|, |s| \} \) for all \(r, s \in \mathbb{K} \) (see [5, 7, 8]). Clearly, \(|1| = |-1| = 1 \) and \(|n| \leq 1 \) for all \(n \in \mathbb{N} \). By the trivial valuation we mean the function \(| \cdot | \) taking everything except for 0 to 1 and \(|0| = 0 \).

Definition 1.1. (cf. [5, 7, 8]). Let \(X \) be a vector space over a scalar field \(\mathbb{K} \) with an NA non-trivial valuation \(| \cdot | \). A function \(\| \cdot \| : X \to [0, \infty) \) is an NA norm (valuation) if it satisfies the following conditions:

Zhihua Wang: School of Science, Hubei University of Technology, Wuhan, Hubei 430068, P.R. China, E-mail: matwzh2000@126.com

*Corresponding Author: Reza Saadati: Department of Mathematics, Iran University of Science and Technology, Tehran, Iran, E-mail: rsaadati@eml.cc
(I) \(\|x\| = 0 \) if and only if \(x = 0 \);

(II) \(\|rx\| = |r|\|x\| \), for any \(r \in \mathbb{K} \) and \(x \in X \);

(III) \(\|x + y\| \leq \max(\|x\|, \|y\|) \) (the strong triangle inequality), for all \(x, y \in X \).

Then \((X, \|\cdot\|) \) is called an NA normed space.

Thanks to the below inequality

\[
\|x_n - x_m\| \leq \max\{\|x_{j+1} - x_j\| : m \leq j \leq n - 1 \}
\]

holds for all \(x_n, x_m \in X \), where \(m, n \in \mathbb{N} \) with \(n > m \). Therefore, a sequence \(\{x_n\} \) is Cauchy if and only if \(\{x_{n+1} - x_n\} \) converges to zero in an NA normed space. By a complete NA normed space, we mean one in which every Cauchy sequence is convergent.

An NA Banach algebra is a complete NA algebra \(\mathcal{A} \) which satisfies \(\|ab\| \leq \|a\|\|b\| \), for all \(a, b \in \mathcal{A} \). For more detailed definitions of NA Banach algebras (see [9, 10]).

If \(\mathcal{J} \) is an NA Banach algebra, then an involution on \(\mathcal{J} \) is a mapping \(t \to t^* \) from \(\mathcal{J} \) into \(\mathcal{J} \) which satisfies (see [5, 7]);

(I) \(t^{**} = t \) for \(t \in \mathcal{J} \);

(II) \((as + \beta t)^* = \bar{\alpha} s^* + \bar{\beta} t^* \), for \(a, \beta \in \mathbb{C} \);

(III) \((st)^* = t^* s^* \) for \(s, t \in \mathcal{J} \).

If, in addition, \(\|t^* t\| = \|t\|^2 \) for \(t \in \mathcal{J} \), then \(\mathcal{J} \) is an NA \(\mathcal{C}^* \)-algebra.

Lemma 1.1. ([11]). Let \((E, d) \) be a complete generalized metric space and \(J : E \to E \) be a strictly contractive mapping with Lipschitz constant \(L < 1 \). Then for each given \(x \in E \), either

\[
d(f^n x, f^{n+1} x) = \infty,
\]

for all non-negative integers \(n \), or there exists a positive integer \(n_0 \), such that;

(i) \(d(f^n x, f^{n+1} x) < \infty \), for all \(n \geq n_0 \);

(ii) the sequence \(\{f^n x\} \) converges to a fixed point \(y^* \) of \(J \);

(iii) \(y^* \) is the unique fixed point of \(J \) in the set \(E^* := \{y \in E : d(f^{n_0} x, y) < \infty \} \);

(iv) \(d(y, y^*) = \frac{1}{1-L} d(y, Jy) \), for all \(y \in E^* \).

2 Higher \(*\)-derivations in NA \(\mathcal{C}^* \)-algebras

In this section, assume that \(\mathcal{A} \) is an NA \(\mathcal{C}^* \)-algebra with norm \(\|\cdot\|_A \) and that \(\mathcal{B} \) is an NA \(\mathcal{C}^* \)-algebra with norm \(\|\cdot\|_B \). For each given mapping \(f_n : \mathcal{A} \to \mathcal{B} \) and each \(n = 0, 1, \ldots \), we define

\[
\mathcal{D}_n f_n(x_1, \ldots, x_m) := \sum_{i=1}^{m} f_n \left(\mu_{x_i} + \frac{1}{m} \sum_{j=1}^{m} \mu_{x_j} \right) + f_n \left(\frac{1}{m} \sum_{i=1}^{m} \mu_{x_i} \right) - 2f_n \left(\frac{1}{m} \sum_{i=1}^{m} x_i \right),
\]

for all \(\mu \in \mathbb{T}^m := \{\mu \in \mathbb{C} : |\mu| = 1\} \) and all \(x_1, \ldots, x_m \in \mathcal{A} \). For more results and applications of functional equations we refer to [12–35].

We need the following definition and lemmas to prove the main results.

Definition 2.1. Let \(\mathbb{N} \) be the set of natural numbers. For each \(s \in \mathbb{N} \), a sequence \(F = \{f_0, f_1, \ldots, f_s\} \) (resp. \(F = \{f_0, f_1, \ldots, f_n, \ldots\} \)) of mappings from \(\mathcal{A} \) into \(\mathcal{B} \) is called a higher \(*\)-derivation of rank \(s \) (resp. infinite rank) from \(\mathcal{A} \) into \(\mathcal{B} \) if;

(i) \(f_n(x^s) = f_n(x)^s \), for all \(x \in \mathcal{A} \) and \(n = 0, 1, \ldots, s \) (resp. \(n = 0, 1, \ldots \));

(ii) \(f_n(xy) = \sum_{i=0}^{n} f_i(x)f_{n-i}(y) \) holds for \(n = 0, 1, \ldots, s \) (resp. \(n = 0, 1, \ldots \)) and all \(x, y \in \mathcal{A} \).

Lemma 2.1. (cf. [1]). Let \(X \) and \(Y \) be real vector spaces. A mapping \(f : X \to Y \) satisfies the functional equation (1.1) if and only if it is additive.
Lemma 2.2. (cf. [12]). Let \(f : \mathcal{A} \to \mathcal{A} \) be an additive mapping, such that \(f(\mu x) = \mu f(x) \), for all \(\mu \in \mathbb{T}^1 \) and all \(x \in \mathcal{A} \). Then the mapping \(f \) is \(C \)-linear.

Theorem 2.1. Let \(\varphi : \mathcal{A}^m \to [0, \infty) \), \(\psi : \mathcal{A}^2 \to [0, \infty) \) and \(\eta : \mathcal{A} \to [0, \infty) \) be functions. Suppose that \(F = \{ f_0, f_1, \ldots, f_n, \ldots \} \) is a sequence of mappings from \(\mathcal{A} \) into \(\mathcal{B} \), such that for each \(n = 0, 1, \ldots ; \)

\[
\| D \mu f_n(x_1, \ldots, x_m) \|_\mathcal{B} \leq \varphi(x_1, \ldots, x_m) \tag{2.1}
\]

\[
\| f_n(xy) - \sum_{i=0}^n f_i(x)f_{n-i}(y) \|_\mathcal{B} \leq \psi(x, y) \tag{2.2}
\]

\[
\| f_n(x') - f_n(x) \|_\mathcal{B} \leq \eta(x) \tag{2.3}
\]

for all \(\mu \in \mathbb{T}^1 \) and all \(x_1, \ldots, x_m \in \mathcal{A} \). Assume that \(|m| < 1 \) is far from zero and there exists \(0 < L < 1 \), such that:

\[
\varphi(mx_1, \ldots, mx_m) \leq |m|L\varphi(x_1, \ldots, x_m) \tag{2.4}
\]

\[
\psi(mx, my) \leq |m|^2 L\psi(x, y) \tag{2.5}
\]

\[
\eta(mx) \leq |m|L\eta(x) \tag{2.6}
\]

for all \(x, y, x_1, \ldots, x_m \in \mathcal{A} \). Then there exists a unique higher \(*\)-derivation \(H = \{ h_0, h_1, \ldots, h_n, \ldots \} \) of any rank from \(\mathcal{A} \) into \(\mathcal{B} \), such that for each \(n = 0, 1, \ldots ; \)

\[
\| f_n(x) - h_n(x) \|_\mathcal{B} \leq \frac{L}{1 - L} \varphi(0, \ldots, 0, x, 0, \ldots, 0), \tag{2.7}
\]

for all \(x \in \mathcal{A} \).

Proof. Consider the set \(E := \{ g : \mathcal{A} \to \mathcal{B} \} \). Introduce a generalized metric \(d \) on \(E \) as follows:

\[
d(g, q) := \inf \left\{ \delta \in (0, \infty) \mid \| g(x) - q(x) \|_\mathcal{B} \leq \delta \varphi(0, \ldots, 0, x, 0, \ldots, 0), \quad \forall x \in \mathcal{A} \right\}.
\]

It is easy to show that \((E, d)\) is a complete generalized metric space (see [36]). Now we consider the mapping \(\jmath : E \to E \) defined by

\[
\jmath g(x) := \frac{1}{m} g(mx),
\]

for all \(g \in E \) and \(x \in \mathcal{A} \). Let \(g, q \in E \), such that \(d(g, q) \leq \delta \), where \(\delta \in (0, \infty) \) is an arbitrary constant. Then we have

\[
\| g(x) - q(x) \|_\mathcal{B} \leq \delta \varphi(0, \ldots, 0, x, 0, \ldots, 0),
\]

for all \(x \in \mathcal{A} \). Hence,

\[
\| \jmath g(x) - \jmath q(x) \|_\mathcal{B} = \| \frac{1}{m} g(mx) - \frac{1}{m} q(mx) \|_\mathcal{B} = \frac{1}{|m|} \| g(mx) - q(mx) \|_\mathcal{B}
\]

\[
\leq L\delta \varphi(0, \ldots, 0, x, 0, \ldots, 0), \tag{2.9}
\]

for all \(x \in \mathcal{A} \). So \(d(\jmath g, \jmath q) \leq Ld(g, q) \), for all \(g, q \in E \). Thus, \(\jmath \) is a strictly contractive self-mapping on \(E \) with Lipschitz constant \(L \).

Letting \(\mu = 1 \), \(x_j = mx \) and \(x_i = 0 \), for all \(1 \leq i \leq m \) with \(i \neq j \) in (2.1), we get

\[
\| f_n(mx) - mf_n(x) \|_\mathcal{B} \leq \varphi(0, \ldots, 0, mx, 0, \ldots, 0), \tag{2.10}
\]
for each $n = 0, 1, \ldots$ and all $x \in \mathcal{A}$. It follows from (2.4) and (2.10) that $d(f_n, \eta f_n) \leq L$. By Lemma 1.1, the sequence ηf_n converges to a fixed point h_n of η, that is,

$$\lim_{k \to \infty} \frac{1}{m^k} f_n(m^k x) = h(x) \tag{2.11}$$

and

$$h_n(mx) = mh_n(x), \tag{2.12}$$

for each $n = 0, 1, \ldots$ and all $x \in \mathcal{A}$. Also the mapping h_n is the unique fixed point of η in the set $E = \{ g \in E : d(f_n, g) < \infty \}$. This implies that h_n is a unique mapping satisfying (2.12), such that there exists a $\delta \in (0, \infty)$ with

$$||f_n(x) - h_n(x)||_\mathcal{B} \leq \delta \varphi(0, \ldots, 0, x, 0, \ldots, 0),$$

for each $n = 0, 1, \ldots$ and all $x \in \mathcal{A}$. Also,

$$d(f_n, h_n) \leq \frac{L}{1 - L} d(f_n, \eta f_n) \leq \frac{L}{1 - L}.$$

This implies that inequality (2.7) holds. Furthermore, it follows from (2.1), (2.4) and (2.11) that

$$\|D_\mu h_n(x_1, \ldots, x_m)\|_\mathcal{B} = \lim_{k \to \infty} \| \frac{1}{m^k} D_\mu f_n(m^k x_1, \ldots, m^k x_m) \|_\mathcal{B} \leq \lim_{k \to \infty} \frac{1}{m^k} \| \varphi(m^k x_1, \ldots, m^k x_m) \| = 0$$

holds for each $n = 0, 1, \ldots$ and all $x_1, \ldots, x_m \in \mathcal{A}$ and $\mu \in \mathbb{T}^1$. So $D_\mu h_n(x_1, \ldots, x_m) = 0$, for all $x_1, \ldots, x_m \in \mathcal{A}$ and $\mu \in \mathbb{T}^1$. If we put $\mu = 1$ in the last equality, then h_n is additive by Lemma 2.1. So letting $x_j = mx$ and $x_i = 0$, for all $1 \leq i \leq m$ with $i \neq j$ in the last equality, we obtain $h_n(mx) = \mu h_n(x)$. Now by using Lemma 2.2, we conclude that the mapping $h_n : \mathcal{A} \to \mathcal{B}$ is C-linear for each $n = 0, 1, \ldots$.

It follows from (2.2), (2.5) and (2.11) that

$$\|h_n(xy) - \sum_{l=0}^{n} h_l(x) h_{n-l}(y)\|_\mathcal{B} \leq \lim_{k \to \infty} \frac{1}{|m|^{2k}} \| f_n(m^{2k} xy) - \sum_{l=0}^{n} f_l(m^k x) f_{n-l}(m^k y) \|_\mathcal{B} \leq \lim_{k \to \infty} \frac{1}{|m|^{2k}} \| \psi(m^k x, m^k y) \| = 0,$$

for each $n = 0, 1, \ldots$ and all $x, y \in \mathcal{A}$. That is, we obtain that

$$h_n(xy) = \sum_{l=0}^{n} h_l(x) h_{n-l}(y),$$

for each $n = 0, 1, \ldots$ and all $x, y \in \mathcal{A}$. Also, by (2.3), (2.6), (2.11) and by a similar method to above, we obtain $h_n(x^*) = h_n(x)^*$, for each $n = 0, 1, \ldots$ and all $x, y \in \mathcal{A}$. This completes the proof of the theorem.

Theorem 2.2. Suppose that $F = \{ f_0, f_1, \ldots, f_n, \ldots \}$ is a sequence of mappings from \mathcal{A} into \mathcal{B} for which there exist functions $\varphi : \mathcal{A}^m \to [0, \infty)$, $\psi : \mathcal{A}^2 \to [0, \infty)$ and $\eta : \mathcal{A} \to [0, \infty)$, such that (2.1), (2.2) and (2.3) hold for each $n = 0, 1, \ldots$ all $\mu \in \mathbb{T}^1$ and all $x_1, \ldots, x_m, x, y \in \mathcal{A}$. Assume that $|m|<1$ is far from zero and there exists $0 < L < 1$, such that;

$$\varphi(x_1, \ldots, x_m) \leq \frac{L}{|m|} \varphi(mx_1, \ldots, mx_m) \tag{2.13}$$

$$\psi(x, y) \leq \frac{L}{|m|^2} \psi(mx, my) \tag{2.14}$$

$$\eta(x) \leq \frac{L}{|m|} \eta(mx) \tag{2.15}$$
for all \(x, y, x_1, \ldots, x_m \in A \). Then there exists a unique higher \(^* \)-derivation \(H = \{ h_0, h_1, \ldots, h_n, \ldots \} \) of any rank from \(A \) into \(\mathcal{B} \), such that for each \(n = 0, 1, \ldots, \)

\[
\|f_n(x) - h_n(x)\|_{\mathcal{B}} \leq \frac{1}{1-L} \varphi(0, \ldots, 0, x, \underbrace{0, \ldots, 0}_{\ell n}),
\]

(2.16)

for all \(x \in A \).

Proof. Let \(E \) and \(d \) be as in the proof of Theorem 2.1. Then \((E, d)\) becomes a complete generalized metric space. Consider the mapping \(\mathcal{B} : E \to E \) defined by

\[
\mathcal{B}g(x) := mg(\frac{x}{m}), \quad \text{for all } g \in \Omega \text{ and } x \in A.
\]

Then, it is easy to see that \(d(\mathcal{B}g, \mathcal{B}q) \leq Ld(g, q) \), for all \(g, q \in E \). By (2.10) and (2.13), we obtain

\[
\|f_n(x) - mf_n(\frac{x}{m})\|_{\mathcal{B}} \leq \varphi(0, \ldots, 0, x, \underbrace{0, \ldots, 0}_{\ell n}),
\]

for each \(n = 0, 1, \ldots \) and all \(x \in A \). So, we have \(d(f_n, \mathcal{B}f_n) \leq 1 \). By Lemma 1.1, there exists a unique mapping \(h_n : A \to \mathcal{B} \), such that \(h_n(x) = mh_n(\frac{x}{m}) \), for each \(n = 0, 1, \ldots \) and all \(x \in A \), i.e., \(h_n \) is a unique fixed point of \(\mathcal{B} \). Moreover,

\[
h_n(x) = \lim_{k \to \infty} |m|^k f_n(\frac{x}{m^k}),
\]

(2.17)

for each \(n = 0, 1, \ldots \) and all \(x \in A \). Also

\[
d(f_n, h_n) \leq \frac{1}{1-L} d(f_n, \mathcal{B}f_n) \leq \frac{1}{(1-L)},
\]

which implies that (2.16) holds for each \(n = 0, 1, \ldots \) and all \(x \in A \). The remaining assertion is similar to the corresponding part of Theorem 2.1. This completes the proof. \(\square \)

Corollary 2.1. Let \(\ell \in (-1, 1) \), \(r \neq 1 \) and \(\theta \) be non-negative real numbers and let \(F = \{ f_0, f_1, \ldots, f_n, \ldots \} \) be a sequence of mappings from \(A \) into \(\mathcal{B} \), such that for each \(n = 0, 1, \ldots, \)

\[
\|Df_n(x_1, \ldots, x_m)\|_{\mathcal{B}} \leq \theta(||x_1||_A + ||x_2||_A + \cdots + ||x_m||_A)
\]

\[
\|f_n(xy) - \sum_{i=0}^{n} f_i(x)f_{n-i}(y)\|_{\mathcal{B}} \leq \theta \cdot (||x||^r_A \cdot ||y||^r_A)
\]

\[
\|f_n(x^*) - f_n(x)^*\|_{\mathcal{B}} \leq \theta \cdot ||x||^r_A,
\]

for all \(\mu \in T^1 \), and \(x_1, \ldots, x_m, x, y \in A \). Then there exists a unique higher \(^* \)-derivation \(H = \{ h_0, h_1, \ldots, h_n, \ldots \} \) of any rank from \(A \) into \(\mathcal{B} \) such that for each \(n = 0, 1, \ldots \), \(\ell r > \ell \),

\[
\|f_n(x) - h_n(x)\|_{\mathcal{B}} \leq \frac{|m|^r}{\ell(|m| - |m^r|)} \theta \cdot ||x||^r_A,
\]

(2.18)

for all \(x \in A \).

Proof. The proof follows from Theorem 2.1 and Theorem 2.2 by taking

\[
\varphi(x_1, \ldots, x_m) = \theta(||x_1||^r_A + ||x_2||^r_A + \cdots + ||x_m||^r_A)
\]

and

\[
\psi(x, y) = \theta \cdot (||x||^r_A \cdot ||y||^r_A), \quad \eta(x) = \theta \cdot ||x||^r_A,
\]

for all \(x_1, \ldots, x_m, x, y \in A \). Choosing \(L = |m|^{(\ell-1)} \), we obtain the desired result. \(\square \)
3 Lie higher *-derivations in NA Lie C^*-algebras

An NA C^*-algebra \mathcal{C}, endowed with the Lie product $[x, y] = \frac{xy - yx}{2}$ on \mathcal{C}, is called an NA Lie C^*-algebra. In this section, assume that \mathcal{A} is an NA Lie C^*-algebra with norm $\| \cdot \|_\mathcal{A}$ and \mathcal{B} is an NA Lie C^*-algebra with norm $\| \cdot \|_\mathcal{B}$. Before proceeding to the proofs of the main results, we first introduce the following definition:

Definition 3.1. Let \mathbb{N} be the set of natural numbers, for each $s \in \mathbb{N}$, a sequence $F = \{f_0, f_1, \ldots, f_s\}$ (resp. $F = \{f_0, f_1, \ldots, f_n\}$) of mappings from \mathcal{A} into \mathcal{B} is called a Lie higher *-derivation of rank s (resp. infinite rank) from \mathcal{A} into \mathcal{B} if:

(i) $f_n(x^s) = f_n(x)^s$ for all $x \in \mathcal{A}$ and for each $n = 0, 1, \ldots, s$ (resp. $n = 0, 1, \ldots$);

(ii) $f_n((x, y)) = \sum_{i=0}^{n} [f_i(x), f_{n-i}(y)]$ holds for each $n = 0, 1, \ldots, s$ (resp. $n = 0, 1, \ldots$) and all $x, y \in \mathcal{A}$.

Theorem 3.1. Let $\varphi : \mathcal{A}^m \rightarrow [0, \infty)$, $\psi : \mathcal{A}^2 \rightarrow [0, \infty)$ and $\eta : \mathcal{A} \rightarrow [0, \infty)$ be functions. Suppose that $F = \{f_0, f_1, \ldots, f_n\}$ is a sequence of mappings from \mathcal{A} into \mathcal{B}, such that for each $n = 0, 1, \ldots$;

$$\|\partial^m f_n(x_1, \ldots, x_m)\|_\mathcal{B} \leq \varphi(x_1, \ldots, x_m)$$

and

$$\|f_n((x, y)) - \sum_{i=0}^{n} [f_i(x), f_{n-i}(y)]\|_\mathcal{B} \leq \psi(x, y)$$

for all $\mu \in \mathbb{T}^1$ and all $x_1, \ldots, x_m, y \in \mathcal{A}$. Assume that $|m| < 1$ is far from zero and that there exists $0 < L < 1$ such that (2.4), (2.5) and (2.6) hold for all $x, y, x_1, \ldots, x_m \in \mathcal{A}$. Then there exists a unique Lie higher *-derivation $H = \{h_0, h_1, \ldots, h_n, \ldots\}$ of any rank from \mathcal{A} into \mathcal{B}, such that for each $n = 0, 1, \ldots, (2.7)$ holds for all $x \in \mathcal{A}$.

Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a mapping $h_n : \mathcal{A} \rightarrow \mathcal{B}$ which is *-preserving for each $n = 0, 1, \ldots$ and satisfies (2.7) for all $x \in \mathcal{A}$. The mapping $h_n : \mathcal{A} \rightarrow \mathcal{B}$ is given by

$$h_n(x) = \lim_{k \rightarrow \infty} \frac{1}{|m|^k} f_n(m^k x),$$

for each $n = 0, 1, \ldots$ and all $x \in \mathcal{A}$. By (2.5) and (3.2), we have

$$\|h_n((x, y)) - \sum_{i=0}^{n} [h_i(x), h_{n-i}(y)]\|_\mathcal{B} = \lim_{k \rightarrow \infty} \frac{1}{|m|^{2k}} \|f_n(m^{2k}x, m^{2k}y) - \sum_{i=0}^{n} [f_i(m^k x), f_{n-i}(m^k y)]\|_\mathcal{B} \leq \lim_{k \rightarrow \infty} \frac{1}{|m|^{2k}} \psi(m^k x, m^k y) = 0,$$

for each $n = 0, 1, \ldots$ and all $x, y \in \mathcal{A}$. So

$$h_n((x, y)) = \sum_{i=0}^{n} [h_i(x), h_{n-i}(y)],$$

for each $n = 0, 1, \ldots$ and all $x, y \in \mathcal{A}$. Thus, $H = \{h_0, h_1, \ldots, h_n, \ldots\}$ is Lie higher *-derivation, as desired.

Theorem 3.2. Suppose that $F = \{f_0, f_1, \ldots, f_n\}$ is a sequence of mappings from \mathcal{A} into \mathcal{B} for which there exist functions $\varphi : \mathcal{A}^m \rightarrow [0, \infty)$, $\psi : \mathcal{A}^2 \rightarrow [0, \infty)$ and $\eta : \mathcal{A} \rightarrow [0, \infty)$, such that (3.1), (3.2) and (3.3) hold for each $n = 0, 1, \ldots$, all $\mu \in \mathbb{T}^1$ and all $x_1, \ldots, x_m, y \in \mathcal{A}$. Assume that $|m| < 1$ is far from zero and that there exists $0 < L < 1$ such that (2.13), (2.14) and (2.15) hold, for all $x, y, x_1, \ldots, x_m \in \mathcal{A}$. Then there exists a unique Lie higher *-derivation $H = \{h_0, h_1, \ldots, h_n, \ldots\}$ of any rank from \mathcal{A} into \mathcal{B}, such that, for each $n = 0, 1, \ldots$, (2.16) holds, for all $x \in \mathcal{A}$.

Proof. The proof is similar to the proof of Theorem 3.1. The result follows from Theorem 2.2.
Corollary 3.1. Let \(\ell \in \{ -1, 1 \}, r \neq 1 \) and \(\theta \) be non-negative real numbers and let \(F = \{ f_0, f_1, \ldots, f_n, \ldots \} \) be a sequence of mappings from \(\mathcal{A} \) into \(\mathcal{B} \), such that, for each \(n = 0, 1, \ldots \),
\[
\| 2\mu f_n(x_1, \ldots, x_m) \|_B \leq \theta (\| x_1 \|_A^{\ell} + \| x_2 \|_A^\ell + \cdots + \| x_m \|_A^\ell)
\]
\[
\| f_n((x, y)) - \sum_{i=0}^n [f_i(x), f_{n-i}(y)] \|_B \leq \theta \cdot (\| x \|_A^{\ell} \cdot \| y \|_A^\ell)
\]
\[
\| f_n(x') - f_n(x)^\ell \|_B \leq \theta \cdot \| x \|_A^\ell,
\]
for all \(\mu \in \mathbb{T}^1 \), and \(x_1, \ldots, x_m, x, y \in \mathcal{A} \). Then there exists a unique Lie higher \(\ast \)-derivation \(H = \{ h_0, h_1, \ldots, h_n, \ldots \} \) of any rank from \(\mathcal{A} \) into \(\mathcal{B} \), such that, for each \(n = 0, 1, \ldots \), if \(\ell \geq 0 \), (2.18) holds, for all \(x \in \mathcal{A} \).

Proof. The proof is similar to the proof of Corollary 2.1. The result follows from Theorem 3.1 and Theorem 3.2.

Acknowledgement: We would like to thank the referee(s) for their comments and suggestions on the manuscript. This research work was supported by Key Project of Educational Department of Hubei Province of China (Grant Nos. D20161401).

References