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Abstract: In the last decade, simpli�ed vine copula models have been an active area of research. They build a

high dimensional probability density from the product of marginals densities and bivariate copula densities.

Besides parametric models, several approaches to nonparametric estimation of vine copulas have been pro-

posed. In this article, we extend these approaches and compare them in an extensive simulation study and a

real data application. We identify several factors driving the relative performance of the estimators. Themost

important one is the strength of dependence. No method was found to be uniformly better than all others.

Overall, the kernel estimators performed best, but do worse than penalized B-spline estimators when there

is weak dependence and no tail dependence.
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1 Introduction
Simpli�ed vine copulas, or pair-copula constructions (PCC), have become very popular over the last decade

[1, 3, 4, 8, 37]. Vine copula models build a high-dimensional dependence structure by hierarchical model-

ing of bivariate copulas (the pair-copulas). Each pair-copula can be speci�ed as a unique parametric copula

function. Thus, simpli�ed vine copula models give rise to very �exible models which are often found to be

superior to othermultivariate copulamodels [1, 12]. Themodels are also easily tractable because pair-copulas

can be estimated sequentially. Parametric models for the pair-copulas are most common, but bear the risk

of misspeci�cation. In particular, most parametric families only allow for highly symmetric and monotone

relationships between variables.

To remedy this issue, several nonparametric approaches have been proposed: penalized Bernstein poly-

nomials and B-splines [21], kernel estimators [28], and a non-penalized Bernstein estimator [33]. A related

contribution introduces the empirical pair-copula as an extension of the empirical copula [16], but does not

aim at estimation of the vine copula density which is the focus of this article.

From a practitioner’s point of view, the question arises: which method should I choose for a given data

set? This question is di�cult to answer theoretically because asymptotic approximations of nonparametric

vine copula density estimators are prohibitively unwieldy, see Propositions 2 and 5 in [28]. In this article, we

conduct an extensive simulation study to provide some guidance nevertheless. All estimation methods will

be compared under several speci�cations of strength and type of dependence, sample size, and dimension,

thereby covering a large range of practical scenarios.
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Althoughour primary goal is to survey and compare existingmethods,we extend the estimators proposed

in [21, 28, 33] in several ways:

– The Bernstein and B-spline estimators of [21] and [33] are extended to allow for general R-vine structures

(opposed to just D- and/or C-vine structures).

– Besides linear B-splines as in [21], we also consider quadratic B-splines.

– Beyond the classical kernel density estimator used in [28], we further consider local linear and local

quadratic likelihood kernel estimators.

– All pair-copula estimators can be combined with structure selection algorithms using both Kendall’s τ
and a corrected AIC as target criterion.

The remainder of this article is organized as follows. Section 2 introduces simpli�ed vine copula models.

Section 3 presents and extends several existing nonparametricmethods for pair-copula estimation, describes

a step-wise algorithm for vine copula estimation, and discusses approaches for model selection. We describe

the design of our simulation study in section 4 and summarize the results in section 5. In section 6, a real data

set is used to illustrate the estimators’ behavior and demonstrate the necessity for nonparametric estimators.

Section 7 contains our conclusions.

2 Background on simpli�ed vine copula models
This section gives a brief introduction to pair-copula constructions. For a more extensive treatment, we refer

to [1, 8, 20].

By Sklar’s theorem [36], any multivariate distribution function F can be split into its marginal distribu-

tions F
1
, . . . , Fd and a copula C:

F(x
1
, . . . , xd) = C

(
F

1
(x

1
), . . . , Fd(xd)

)
The copula C describes the dependence structure of the random vector X. It is, in fact, the joint distribution

of the random vector U = (U
1
, . . . , Ud) =

(
F

1
(X

1
), . . . , Fd(Xd)

)
, if the distributions Fi are continuous for

i = 1, . . . , d. Note that U
1
, . . . , Ud are uniformly distributed on the unit interval. If F admits a density with

respect to the Lebesgue measure, we can di�erentiate the above equation to get

f (x
1
, . . . , xd) = c

(
F

1
(x

1
), . . . , Fd(xd)

)
×

d∏
k=1

fk(xk), (1)

where c, f
1
, . . . , fd are the probability density functions corresponding to C,

F
1
, . . . , Fd respectively.

Any copula density c can be decomposed into a product of d(d − 1)/2 bivariate (conditional) copula

densities [2, 3, 19]. The decomposition is not unique, but all possible decomposition can be organized as

graphical structure, called regular vine (R-vine). It is a sequence of trees Tm = (Vm , Em),m = 1, . . . , d − 1

satisfying the following conditions:

(i) T
1
is a tree with nodes V

1
= {1, . . . , d} and edges E

1
.

(ii) For m ≥ 2, Tm is a tree with nodes Vm = Em−1
and edges Em.

(iii) (Proximity condition) Whenever two nodes in Tm+1
are joined by an edge, the corresponding edges in Tm

must share a common node.

Figure 1 shows an example of a regular vine with each edge e annotated by (je , ke;De). The notation for an

edge e in Ti depends on the two shared edges in Ti−1
, denoted by a = (ja , ka;Da) and b = (jb , kb;Db) with

Va = {ja , ka , Da} and Vb = {jb , kb , Db}. Here De is a set of indices called conditioning set while {je , ke}
is the conditioned set of an edge e. In Tree Ti, the nodes a and b are joined by edge e = (je , ke;De), with

je = min{l : l ∈ (Va ∪ Vb) \ De}, ke = max{l : l ∈ (Va ∪ Vb) \ De} and De = Va ∩ Vb.
A vine copula is a graphical model describing the dependence of a d-variate random vector U =

(U
1
, . . . , Ud) ∼ C. The vine tree sequence is also called the structure of the vine copula model. This model
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Figure 1: Example of a regular vine tree sequence.

identi�es each edge e of the vine with a bivariate copula cje ,ke;De (called pair-copula). The joint density of the

vine copula can then be written as the product of all pair-copula densities:

c(u) =

d−1∏
m=1

∏
e∈Em

cje ,ke;De
(
Cje|De (uje |uDe ), Cke|De (uke |uDe ); uDe

)
, (2)

where uDe := (u`)`∈De is a subvector of u = (u
1
, . . . , ud) ∈ [0, 1]

d
and Cje|De is the conditional distribution of

Uje |UDe = uDe . The pair-copula density cje ,ke;De is the copula density corresponding to the two variables Uje
and Uke , conditional on UDe = uDe .

The density decomposition (2) holds for any copula density c. In this general form, the pair-copulas

cje ,ke;De depend on the value of the conditioning vector uDe . To make the model more tractable, one usu-

ally makes the simplifying assumption that the pair-copula densities do not change with uDe . In this case, the

model is called a simpli�ed vine copula model and the corresponding density can be written as

c(u) =

d−1∏
m=1

∏
e∈Em

cje ,ke;De
(
Cje|De (uje |uDe ), Cke|De (uke |uDe )

)
.

Example 1. The density of a simpli�ed vine copula model corresponding to the tree sequence in Figure 1 is

c(u
1
, . . . , u

5
) = c

1,2
(u

1
, u

2
) × c

1,3
(u

1
, u

3
) × c

3,4
(u

3
, u

4
) × c

3,5
(u

3
, u

5
)

× c
2,3;1

(u
2|1, u3|1) × c

1,4;3
(u

1|3, u4|3) × c
1,5;3

(u
1|3, u5|3)

× c
2,4;1,3

(u
2|1,3, u4|1,3) × c

4,5;1,3
(u

4|1,3, u5|1,3)

× c
2,5;1,3,4

(u
2|1,3,4, u5|1,3,4),

where we used the abbreviation uje|De := Cje|De (uje |uDe ).

Vine copula densities involve conditional distributions Cje|De . We can express them in terms of conditional

distributions corresponding to bivariate copulas in the previous tree as follows: Let le ∈ De be another index

such that cje ,le;De\le is a pair-copula in the previous tree, and de�ne D′e = De \ le. Then, we can express

Cje|De (uje |uDe ) = hje|le;D′e
(
Cje|D′e (uje |uD′e )

∣∣ Cle|D′e (ule |uD′e )), (3)

where the h-function is de�ned as

hje|le;D′e (uje |ule ) :=

uje∫
0

cje ,le;D′e (v, ule )dv =

∂Cje ,le;D′e (uje , ule |uD′e )
∂ule

. (4)
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The arguments Cje|D′e (uje |uD′e ) and Cle|D′e (ule |uD′e ) of the h-function in (3) can be rewritten in the samemanner.

In each step of this recursion the conditioning set De is reduced by one element. Eventually, this allows us to

write any of the conditional distributions Cje|De as a recursion over h-functions that are directly linked to the

pair-copula densities in previous trees.

3 Nonparametric estimation of simpli�ed vine copula models
We now discuss how simpli�ed vine copula models can be estimated nonparametrically. First, we give an

overview of nonparametric estimators of bivariate copula densities. Second, we outline a general step-wise

estimation algorithm for the full vine copula density, which can be used with any bivariate copula density

estimator. We also describe a data-driven structure selection algorithm that was initially proposed in [10].

3.1 Nonparametric estimation of bivariate copula densities

The classical approach to density estimation is to assume a parametric model and estimate its parameters by

maximum likelihood. There is a large variety of bivariate parametric copula models. Special classes are the

elliptical copulas (including the Gaussian and Student t families), and the Archimedean class (including the

Clayton, Frank and Gumbel families); for more see [20]. However, parametric models notoriously lack �exi-

bility and bear the risk of misspeci�cation. Nonparametric density estimators are designed to remedy these

issues. In the context of copula densities, these estimators have to take the bounded support into account.

In the following we summarize the state-of-the-art of the major strands of nonparametric copula density

estimation. For simplicity, we only consider the bivariate case. We assume throughout that we are given n
observations (U(i)

1

, U(i)
2

), i = 1, . . . , n, from a copula density c that we want to estimate.

3.1.1 Empirical Bernstein copula

A classical tool in function approximation are Bernstein polynomials [24]. The normalized Bernstein polyno-

mial of degree K is de�ned as

BKk(u) = (K + 1)

(
K
k

)
(u)

k
(1 − u)

K−k
, for k = 0, . . . , K.

The collection of all Bernstein polynomials form a basis of the space of all square-integrable functions on

[0, 1]. A natural idea is to approximate an arbitrary function by a linear combination of a �nite number of

basis functions. Based on this idea, the Bernstein copula density was de�ned in [32]. It is an approximation

of the true copula density, and can be expressed as

c̃(u
1
, u

2
) =

K∑
k

1
=0

K∑
k

2
=0

BKk
1

(u
1

)BKk
2

(u
2

)vk
1
,k

2

,

where

vk
1
,k

2

=

(k
1

+1)/
¯K∫

k
1
/

¯K

(k
2

+1)/
¯K∫

k
2
/

¯K

c(u
1
, u

2
)du

1
du

2
.

and
¯K = (K + 1). Note that the coe�cient vk

1
,k

2

describes the probability that (U(i)
1

, U(i)
2

) is contained in the

cell [k
1
/

¯K, (k
1

+ 1)/
¯K] × [k

2
/

¯K, (k
2

+ 1)/
¯K]. The empirical Bernstein copula density estimator is de�ned by
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c̃(u
1
, u

2
), but replacing vk

1
,k

2

by the empirical frequencies obtained from a contingency table:

ĉ(u
1
, u

2
) =

K∑
k

1
=0

K∑
k

2
=0

BKk
1

(u
1

)BKk
2

(u
2

)v̂k
1
,k

2

,

where

v̂k
1
,k

2

=

1

n × #

{
(U(i)

1

, U(i)
2

) ∈ [k
1
/

¯K, (k
1

+ 1)/
¯K] × [k

2
/

¯K, (k
2

+ 1)/
¯K]

}
,

which is the maximum-likelihood estimator for vk
1
,k

2

.

The Bernstein copula density estimator was used in the context of vine copulas in [33]. As the marginal

distributions of the Bernstein copula density do not need to be uniform, the authors calculate an approxi-

mation to the contingency table by solving a quadratic program, imposing constraints for uniform marginal

distributions. The smoothing parameter for the Bernstein copula density estimator is K, the number of knots.

Selection rules for K that adapt to the sample size and strength of dependence were proposed in [30]. Our

implementation is available in the kdecopula R package [26], and uses the rule

Kopt = bn1/3

exp(|ρ̂|1/n)(|ρ̂| + 0.1)c,

where ρ̂ is the empirical Spearman’s ρ.

3.1.2 Penalized Bernstein polynomials and B-splines

For �xed K, the Bernstein copula density estimator is a parametric model with (K + 1)

2

parameters. As any

parametric model with many parameters, it is prone to over�tting. To gain control of the smoothness of the

�t, a penalized likelihood approach was proposed in [21].

Viewing the Bernstein copula density as a parametric model with parameter vector v =

(v
00
, . . . , v

0K , . . . , vKK), i.e.,

c̃(u
1
, u

2
; v) =

K∑
k

1
=0

K∑
k

2
=0

BKk
1

(u
1

)BKk
2

(u
2

)vk
1
,k

2

, (5)

we can estimate the parameters by maximizing the log-likelihood,

`(v) = log

n∑
i=1

c̃
(
U(i)

1

, U(i)
2

; v
)
. (6)

As each of the normalized Bernstein polynomials is a density, the weighted sum of normalized Bernstein

polynomials is a density, if we ensure that∑
k

1
,k

2

vk
1
,k

2

= 1, vk
1
,k

2

≥ 0. (7)

We will need additional constraints to enforce uniform marginal distributions: for Bernstein polynomials∫
c̃(u

1
, u

2
) du

1
≡ 1 holds if the marginal coe�cients ful�ll

vk
1
.

=

∑
k

2

vk
1
,k

2

= 1/(K + 1), for all k
1

= 0, . . . , K. (8)

The same constraints follow for

∫
c̃(u

1
, u

2
) du

2
≡ 1. These constraints can be formulated in matrix notation

yielding

ATKv = 1/(K + 1) (9)

where AK sums up the elements of vk
1
,k

2

column-wise (i.e. over k
2
) and row-wise (i.e. over k

1
), i.e. ATK =

((IK⊗1TK), (1TK⊗IK)),where1K is the columnvector of dimensionKwith elements 1 and IK is theK dimensional

identity matrix.
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The log-likelihood (6) can be maximized under the constraints (7), (8) and (9), using quadratic program-

ming (e.g., with the quadprog R package [40]). But since this is a parametric model with many parameters,

the �tted copula density may be wiggly, see e.g., [39]. This issue can be resolved by imposing an appropriate

penalty on the basis coe�cients. We postulate that the integrated squared second order derivatives are small

and formulate the penalty as∫ (
∂2 c̃(u

1
, u

2
; v)

(∂u
1

)
2

)
2

+

(
∂2 c̃(u

1
, u

2
; v)

(∂u
2

)
2

)
2

du
1
du

2
,

see also [21, 41]. This can be written as a quadratic form of a penalty matrix P , see the Appendix of [21]. The

corresponding penalized log-likelihood is de�ned as

`p(v, λ) = `(v) −

1

2

λvTPv, (10)

which is again maximized with respect to (7), (8) and (9). The penalty parameter λ needs to be selected ade-

quately, that is data driven. In section 2.5 of [21], the authors propose a method that formulates the penalized

likelihood approach as linear mixed model and comprehend the penalty as normal prior imposed on the

coe�cient vector. We apply this methodology, too.

One can further use B-spline basis functions instead of Bernstein polynomials [21]. They replace each BKk
in (5) with a B-spline, located at equidistant knots κk = k/K with k = 0, . . . , K, normalized so that it satis�es∫

1

0

BKk(u) du = 1 for k = 0, . . . , K −1 + q. In [21], only normalized linear (q = 1) B-splines were used. To allow

for more �exibility, we will also use normalized quadratic (q = 2) B-splines in our study.

In order to guarantee that c̃(u
1
, u

2
; v) is a bivariate copula density, we impose similar constraints as the

ones for the Bernstein polynomials. The linear constraints (7) will be the same for B-splines, but the uniform

margins condition (8) has to be adapted. The condition takes the form AKv = 1 with AK = BK(κ), choosing

κ =

{
κ

0
, . . . , κK , for linear B-splines,

0,

κ
1
−κ

0

2

+ κ
0
,

κ
2
−κ

1

2

+ κ
1
, . . . , κK+1

−κK
2

+ κK , 1, for quadratic B-splines.

For the penalization, we work with a penalty on them-th order di�erences of the spline coe�cients v, as
suggested for B-spline smoothing in [11], de�ning a penalty matrix Pm, where we choose m = q + 1. Further

details of this smoothing concept can be found in [31]. In the following,we de�ne the di�erence based penalty

matrix Pm for the m-order di�erences through

Pm := (1K+q ⊗ Lm)

T
(Lm ⊗ 1K+q). (11)

Let Lm ∈ RK+q−m×K+q
be a di�erence matrix of order m, e.g., for q = 1 we get m = 2 and

L
2

=


1 −2 1 0 · · · 0

0 1 −2 1

.
.
.

.

.

.

.

.

.

.
.
.

.
.
.

.
.
.

.
.
. 0

0 · · · 0 1 −2 1

 ∈ RK−1×K+1

.

Then for B-splines, the penalized log-likelihood becomes

lp(v, λ) = l(v) −

1

2

λvTPmv. (12)

Note, that we achieve an independence copula, if we set the penalty parameter λ to in�nity in (10) or (12). The

penalized Bernstein and B-splines estimators are implemented in the R package penRvine [34].

3.1.3 Kernel weighted local likelihood

Kernel estimators are well-established tools for nonparametric density estimation. Several kernel methods

have been tailored to the problem of copula density estimation. Their main challenge is to avoid bias and
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consistency issues at the boundaries of the support. The earliest contribution is the mirror-re�ection method

[15]. Later, the beta kernel density estimator of [7] was extended to the bivariate case in [6].

The more recent contributions all focus on a transformation trick. Assume we want to estimate a copula

density c given a random sample

(
U(i)

1

, U(i)
2

)
, i = 1, . . . , n. Let Φ be the standard normal distribution func-

tion and ϕ its density. Then the random vectors (Z(i)
1

, Z(i)
2

) =

(
Φ−1

(U(i)
1

),Φ−1

(U(i)
2

)

)
have normally distributed

margins and are supported on the full R2

. In this domain, kernel density estimators work very well and do

not su�er from any boundary problems. By Sklar’s Theorem for densities (1), the density f of (Z(i)
1

, Z(i)
2

) de-

composes to

f (z
1
, z

2
) = c

(
Φ(z

1
),Φ(z

2
)

)
ϕ(z

1
)ϕ(z

2
), for all (z

1
, z

2
) ∈ R. (13)

By isolating c in (13) and the change of variables uj = Φ(zj), j = 1, 2, we get

c(u
1
, u

2
) =

f
(
Φ−1

(u
1

),Φ−1

(u
2

)

)
ϕ
(
Φ−1

(u
1

)

)
ϕ
(
Φ−1

(u
2

)

) . (14)

We can use any kernel estimator f̂ of f to de�ne a kernel estimator of the copula density c via (14):

ĉ(u
1
, u

2
) =

f̂
(
Φ−1

(u
1

),Φ−1

(u
2

)

)
ϕ
(
Φ−1

(u
1

)

)
ϕ
(
Φ−1

(u
2

)

) . (15)

Estimators of this kind have an interesting feature. The denominator of (15) vanishes when u
1
or u

2
tend to

zero or one. If the numerator vanishes at a slower rate, the estimated copula density explodes towards the

corners of the unit square. This behavior is common for many popular parametric families, including the

Gauss, Student, Gumbel, and Clayton families. The transformation estimator (15) is well suited to resemble

such shapes. However, its variance will also explode towards the corners and the estimator will be numeri-

cally unstable. To accommodate for this, we restrict the estimator to [0.001, 0.999]

2

and set estimates outside

of this region to the closest properly de�ned estimate.

To estimate the density f , the classical bivariate kernel density estimator was used in [28]. Wewill extend

this approach by resorting to the more general class of local polynomial likelihood estimators; see [23] for a

general account and [13] in the context of bivariate copula estimation.

Assume that the log-density log f (z
1
, z

2
) of the random vector Z(i)

= (Z(i)
1

, Z(i)
2

) can be approximated lo-

cally by a polynomial of order q. For example, using a log-quadratic expansion, we get

log f (z′
1
, z′

2
) ≈ Pa(z)

= a
1

+ a
2

(z
1
− z′

1
) + a

3
(z

2
− z′

2
) + a

4
(z

1
− z′

1
)

2

+ a
5

(z
1
− z′

1
)(z

2
− z′

2
) + a

6
(z

2
− z′

2
)

2

for (z′
1
, z′

2
) in the neighborhood of z = (z

1
, z

2
). The polynomial coe�cients a can be found by solving the

weighted maximum likelihood problem

â = arg max

a∈R6

{ n∑
i=1

K
(
B−1

(z − Z(i)
)

)
Pa(z − Z(i)

) − n
∫
R2

K
(
B−1

(z − s)

)
exp

(
Pa(z − s)ds

}
,

where the kernel K is a symmetric probability density function,

K(z) = K(z
1

)K(z
2

) is the product kernel, and B ∈ R2×2

is a matrix with det(B) > 0. B is called the

bandwidth matrix and controls the degree of smoothing. The kernel K serves as a weight function that

localizes the above optimization problem around z.
We obtain â

1
as an estimate for log f (z

1
, z

2
) and, consequently, exp(â

1
) as an estimate for f (z

1
, z

2
). An

estimate of the copula density can be obtained by plugging this estimate in (14). For a detailed treatment

of this estimator’s asymptotic behavior we refer to [13]. In general, the estimator does not yield a bona �de
copuladensity because themarginsmaynot beuniform. This issue canbe resolvedbynormalizing thedensity

estimate, for details see [27].
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Input: Observations (U(i)
1

, . . . , U(i)
d ), i = 1, . . . , n, vine structure (E

1
, . . . , Ed−1

).

Output: Estimates of pair-copula densities and h-functions required to evaluate the vine copula

density (16).

———————————————————————————————————

for m = 1, . . . , d − 1:

for all e ∈ Em:
(i) Based on

(
Û(i)
je|De , Û

(i)
ke|De

)
i=1,...,n, obtain an estimate of the copula density cje ,ke;De which we

denote as ĉje ,ke;De .

(ii) Derive corresponding estimates of the h-functions ĥje|ke;De , ĥke|je;De by integration (eq. (4)).

(iii) Set

Û(i)
je|De∪ke := ĥje|ke;De

(
Û(i)
je|De

∣∣Û(i)
ke|De

)
,

Û(i)
ke|De∪je := ĥke|je;De

(
Û(i)
ke|De

∣∣Û(i)
je|De

)
, i = 1, . . . , n.

end for
end for

Algorithm 1: Sequential estimation of simpli�ed vine copula densities

For applications of the estimator, an appropriate choice of the bandwidth matrix is crucial. For the local

constant approximation, a simple rule of thumb was shown to perform well in [27]. We use an improved

version of this rule that also adjusts to the degree of the polynomial q:

B
rot

= νqn−1/(4q*+2)Σ̂1/2

Z , q* = 1 + bq/2c,

where Σ̂Z is the empirical covariance matrix of Z(i)
, i = 1, . . . , n, and ν

0
= 1.25, ν

1
= ν

2
= 5. An implementa-

tion of the estimator is available in the R package kdecopula [26].

3.2 Step-wise estimation of vine copula densities

We now turn to the question how a simpli�ed vine copula density can be estimated. Most commonly, this is

done in a sequential procedure introduced in [1]. The procedure is generic in the sense that it can be used

with any consistent estimator for a bivariate copula. It is summarized in algorithm 1.

From now onwe use c to denote a d-dimensional vine copula density. Assumewe have a random sample

U(i)
=

(
U(i)

1

, . . . , U(i)
d
)
, i = 1, . . . , n, from c. Recall that this density can be written as

c(u) =

d−1∏
m=1

∏
e∈Em

cje ,ke;De (Cje|De (uje |uDe ), Cke|De (uke |uDe )). (16)

In the �rst tree, the conditioning set De is empty. So for e ∈ E
1
, estimation of the pair-copula densities

cje ,ke;De is straightforward, since no conditioning is involved. We simply apply one of the estimators from

subsection 3.1 to the bivariate random vectors (U(i)
je , U

(i)
ke ). This gives us estimates ĉje ,ke;De , e ∈ E

1
. By one-

dimensional integration (eq. (4)) we can derive estimates of the corresponding h-functions. They can be de-

rived in closed form for Bernstein and B-spline estimators, see [21]. For kernel estimators, the h-functions

have to be computed numerically.

In a next step, we transform the initial copula data by applying the estimated h-functions to obtain

pseudo-observations from the pair-copulas in the second tree. Using these, we can estimate the pair-copula

densities cje ,ke;De , e ∈ E
2
. We iterate through the trees in this manner until all pair-copula densities and

h-functions have been estimated.

Theorem 1 in [28] shows that simpli�ed vine copula density estimators de�ned by algorithm 1 are con-

sistent under rather mild conditions. An appealing property of these estimators is the absence of curse of di-

mensionality: the convergence rate does not depend on the dimension. In fact, the convergence rate achieves

the optimal rate for a two-dimensional nonparametric density estimator.
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Input: Observations (U(i)
1

, . . . , U(i)
d ), i = 1, . . . , n.

Output: Vine structure (E
1
, . . . , Ed−1

) and estimates of pair-copula densities and h-functions required

to evaluate the vine copula density (16).

———————————————————————————————————

for m = 1, . . . , d − 1:

Calculate weights we for all possible edges e = {je , ke;De} that satisfy the proximity condition

(see section 2) and select the edge set Em as

Em = arg max

E*m

∑
e∈E*m

we ,

under the constraint that E*m corresponds to a spanning tree.

for all e ∈ Em:
(i) Based on

(
Û(i)
je|De , Û

(i)
ke|De

)
i=1,...,n, obtain an estimate of the copula density cje ,ke;De which we

denote as ĉje ,ke;De .

(ii) Derive corresponding estimates of the h-functions ĥje|ke;De , ĥke|je;De by integration (eq. (4)).

(iii) Set

Û(i)
je|De∪ke := ĥje|ke;De

(
Û(i)
je|De

∣∣Û(i)
ke|De

)
,

Û(i)
ke|De∪je := ĥke|je;De

(
Û(i)
ke|De

∣∣Û(i)
je|De

)
, i = 1, . . . , n.

end for
end for

Algorithm 2: Sequential estimation and structure selection for simpli�ed vine copula models

3.3 Selection strategies for the vine structure

So far we assumed that the structure of the vine (i.e., the edge sets E
1
, . . . , Ed−1

) is known. In practice,

however, the structure has to be chosen by the statistician. This choice is very di�cult, since there are

d!/2 × d(d−2)(d−3)/2

possible vine structures [25], which grows excessively with d. When d is very small, it may

still be practicable to estimate vine copula models for all possible structures and compare them by a suitable

criterion (such as AIC). But already for a moderate number of dimensions one has to rely on heuristics.

A selection algorithm that seeks to capture most of the dependence in the �rst couple of trees was pro-

posed in [10]. This is achieved by �nding the maximum spanning tree using a dependence measure as edge

weights, e.g., the absolute value of the empirical Kendall’s τ. The resulting estimation and structure selection

procedure is summarized in a general form in algorithm 2.

Several speci�cations of the edge weight were investigated in a fully parametric context in [9]. The most

common edgeweight we is the absolute value of the empirical Kendall’s τ. It was proposed in [10] and used in

a non-parametric context in [28]. On the other hand, a corrected Akaike information criterion (cAIC) [17] was

used as edge weight we in [21]. When using the cAIC criterion in Algorithm 2, the weight we for edge e is

cAICe = −2`e + 2dfe +

2dfe(dfe + 1)

n − dfe − 1

, (17)

where

`e =

n∑
i=1

ln ĉje ,ke;De
(
Û(i)
je|De , Û

(i)
ke|De

)
,

is the log-likelihood and dfe is the e�ective degrees of freedom (EDF) of the estimator ĉe. For explicit formulas

for the EDFwe refer to [21] for the spline approach and to [23] for the kernel estimators. For parametric copula

estimation, the EDF equals the number of estimated parameters for the chosen copula family.

From a computational point of view, the cAIC has a big disadvantage: before a tree can be selected, the

pair-copulas of all possible edges in this tree have to be estimated. Just for the �rst tree, this amounts to esti-

mating

(d
2

)
bivariate copula densities. The empirical Kendall’s τ on the other hand can be computed rapidly
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for all pairs. It allows to select the tree structure before any pair-copula has been estimated. Then, only d − 1

pair-copulas have to be estimated in the �rst tree. The situation is similar for subsequent trees. Both ap-

proaches will be compared in our simulation study with regard to estimation accuracy and speed.

4 Description of the simulation study design
We compare the performance of the vine copula density estimators discussed in section 3 over a wide range

of scenarios. We consider several speci�cations of sample size, dimension, strength of dependence, and tail

dependence.We randomize the simulationmodels and characterize the scenarios byprobability distributions

for the pair-copula families anddependence parameters. A detailed description of the study design procedure

will be given in the following sections.

4.1 Simulation scenarios based on model randomization

To investigate how various factors in�uence the estimators’ performance, we create a number of scenarios.

Each of these scenarios is characterized by a combination of the factors shown in Table 1.

To make the results for a particular dependence scenario as general as possible, we randomly generate

a model in the following steps:

Step 1. Draw R-vine structure:
We do this in the following steps:

(i) Draw n samples for d independent uniform random variables,
˜Ui,j, i = 1, . . . , n, j = 1, . . . , d.

(ii) On these samples, run the structure selection algorithm of [10] (only allowing for the indepen-

dence family).

(iii) Set the model structure to the one selected by the algorithm.

Step 2. Draw pair-copula families:
– only tail dependent copulas: draw each of the d(d−1)/2 pair-copula families with equal probabil-

ities from the Student t- (df = 4), Gumbel (with rotations) and Clayton (with rotations) copulas.

– no tail dependence: draw each of the d(d−1)/2 pair-copula families with equal probabilities from

the Gaussian and Frank copulas.

– both: for each of d(d − 1)/2 pair-copulas:

(i)choose with equal probabilities whether the copula has tail dependence or not,

(ii)proceed as above.

Step 3. Draw pair-copula parameters:
For each pair-copula:

(i) Randomly generate the absolute value of Kendall’s τ from the following distributions:

– weak dependence: Beta(1, 4)-distribution (E[|τ|] = 0.2),

– strong dependence: Beta(5, 5)-distribution (E[|τ|] = 0.5).

The densities are shown in Figure 2.

(ii) Randomly choose the sign of Kendall’s τ as Bernoulli(0.5) variable.

(iii) Usually, partial dependence is weaker than direct pair-wise dependence. To mimic this behavior

we decrease the simulated absolute Kendall’s τ by a factor of 0.8

m
, where m is the tree level of

the pair-copula.
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Table 1: List of factors that determine the set of simulation scenarios.

Dimension d Sample Size n Type of dependence Strength of dependence
5 400 only tail dependence weak
10 2000 no tail dependence strong

both types

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

0.0 0.2 0.4 0.6 0.8 1.0
0

1
2

3
4

Figure 2: Densities for the simulation of absolute Kendall’s τ in the scenarios with weak (left) and strong (right) dependence.

(iv) For all families under consideration there is a one-to-one relationship between the copula param-

eter and Kendall’s τ, see e.g., Table 2 in [5]. Hence, we set the copula parameter by inversion of

the reduced value of Kendall’s τ.

Step 4. Draw observations from the �nal model:
With the selected structure, copula families and their parameters, the vine copulamodel is fully speci�ed.

We can draw random samples from this vine copula model using the algorithm of [38], as implemented

in the VineCopula R library [35].

The stochastic model characterized by steps 1–4 can be interpreted as a whole. It is a mixture of vine copula

models, mixed over its structure, families, and parameter. The mixing distribution for the families is uniform

over sets determined by the ‘type of dependence’ hyper-parameter. The mixing distribution for the absolute

Kendall’s τ follows a Beta distribution with parameters characterized by the ‘strength of dependence‘ hyper-

parameter. Each scenario corresponds to a particular speci�cation of the mixture’s hyperparameters. The

bene�t of this construction is that it yields models that are representative for a wide range of scenarios en-

countered in practice. It also limits the degrees of freedom we would have when specifying all pair-copula

families and parameters manually.

4.2 Estimation methods

We compare the following pair-copula estimators:

– par: parametric estimator as implemented in the function BiCopSelect of the R package VineCopula
[35]. It estimates the parameters for several parametric families and selects the best model based on AIC.

The implemented families are: Independence, Gaussian, Student t, Clayton, Frank, Gumbel, Joe, BB1,

BB6, BB7, BB8, Tawn types I and II,

– bern: non-penalized Bernstein estimator (see subsubsection 3.1.1),

– pbern: penalized Bernstein estimator (see subsubsection 3.1.1) with K = 14 knots,

– pspl1: penalized linear B-spline estimator (see subsubsection 3.1.2) with K = 14,

Unauthenticated
Download Date | 11/16/18 9:13 AM



110 | Thomas Nagler et al.

– pspl2: penalized quadratic B-spline estimator (see subsubsection 3.1.2) with K = 10,

– tll0: transformation local likelihood kernel estimator of degree q = 0 (see subsubsection 3.1.3),

– tll1: transformation local likelihood kernel estimator of degree q = 1 (see subsubsection 3.1.3),

– tll2: transformation local likelihood kernel estimator of degree q = 2 (see subsubsection 3.1.3).

We further implemented two structure selectionmethods for each estimation pair-copula estimator (based on

Kendall’s τ and cAIC, see subsection 3.3); additionally we computed each estimator under the true structure.

4.3 Performance measurement

As a performance measure, we choose the integrated absolute error (IAE)

IAE =

∫
[0,1]

d

|ĉ(u) − c(u)|du,

where ĉ is the estimated and c is the true copula density. The above expression requires us to calculate a

d-dimensional integral, which can be di�cult when d becomes large. To overcome this, we estimate this

integral via importance sampling Monte Carlo, see e.g., section 5.2 in [29]. That is,

ÎAE =

1

N
∑

i=1,...,N

|ĉ(Ui) − c(Ui)|
c(Ui)

,

where Ui
iid∼ c is a random vector drawn from the true copula density c. This results in an unbiased estima-

tor of the IAE with relatively small variance: usually the numerator is large/small when the denominator is

large/small. Hence, the variance of the terms of the sum is small and, thereby, the variance of the sum is

small. All results will be based on an importance sample of size N = 1 000.

For each estimator and each possible simulation scenario emerging from Table 1, we record the ÎAE on

R = 100 simulated data sets.

5 Results
Figure 3 and Figure 4 present the results of the simulation study described in section 4. The analysis will be

divided into several sections. The �rst takes a very broad view, whereas the remaining ones investigate the

in�uence of individual factors. We acknowledge that the information density in the �gures is extremely high.

So we start with a detailed description of the �gures’ layout.

Figure 3 contains the results for all scenarios with weak dependence; Figure 4 with strong dependence.

The left columns correspond to the smaller sample size (n = 400) and the right columns to the larger sample

size (n = 2 000). The �gures are also partitioned row-wise with an alternating pattern of the dimensions d = 5

and d = 10. Two subsequent rows correspond to the same type of dependence (no tail dependence, both, only

tail dependence). In total there are 32 panels, each representing one of the 32 possible combinations of the

factors listed in Table 1.

Each panel contains 24 boxes in 8 groups. Each group corresponds to one estimationmethod for the pair-

copulas. The three boxes in each group represent the three di�erent methods for structure selection: known

structure, maximum spanning trees with Kendall’s τ, maximum spanning trees with cAIC (from left to right).

The box spans the interquartile range, the median is indicated by a horizontal line, the whiskers represent

the 10% and 90% percentiles.

5.1 Overall ranking of methods for pair-copula estimation

We begin our analysis with a broad view on the relative performance of the pair-copula estimators. We want

to assess the performance of the estimation methods, averaged over all scenarios and structure selection
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n = 400 n = 2000

d =
 5

no tail dependence

d =
 10

no tail dependence

d =
 5

both

d =
 10

both

d =
 5

only tail dependent copulas

d =
 10

only tail dependent copulas

par bern pbern pspl1 pspl2 tll0 tll1 tll2 par bern pbern pspl1 pspl2 tll0 tll1 tll2

0.0

0.1

0.2

0.3

0.0

0.2

0.4

0.6

0.0

0.1

0.2

0.3

0.4

0.0

0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.00

0.25

0.50

0.75

1.00

estimator

IA
E

weak dependence

Figure 3: weak dependence: the box plots show the IAE achieved by each estimation method. Results are split by sample size,
dimension, and type of dependence. Per estimator there are three boxes, corresponding to estimation under known structure,
selection by Kendall’s τ, and selection by cAIC (from left to right).
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n = 400 n = 2000
d =

 5

no tail dependence

d =
 10

no tail dependence

d =
 5

both

d =
 10

both

d =
 5

only tail dependent copulas

d =
 10

only tail dependent copulas

par bern pbern pspl1 pspl2 tll0 tll1 tll2 par bern pbern pspl1 pspl2 tll0 tll1 tll2

0.0

0.2

0.4

0.6

0.0

0.5

1.0

0.00

0.25

0.50

0.75

0.0

0.5

1.0

1.5

0.0

0.3

0.6

0.9

0.0

0.5
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1.5

estimator

IA
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Figure 4: strong dependence: the box plots show the IAE achieved by each estimation method. Results are split by sample size,
dimension, and type of dependence. Per estimator there are three boxes, corresponding to estimation under known structure,
selection by Kendall’s τ, and selection by cAIC (from left to right).
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Table 2: The relative rank of estimators averaged over all scenarios.

par bern pbern pspl1 pspl2 tll0 tll1 tll2
average rank 1.28 7.17 6.35 5.00 5.01 5.01 3.83 2.35

strategies. But just taking the average IAE could be misleading. It is evident from Figures 3 and 4 that the

scale of the IAE varies between scenarios. Averaging the bare IAE leads to an unbalanced few, laying more

weight onparticular scenarios.As amore robust alternative,we take the followingapproach: in each scenario,

average the IAE over replications and structure selection strategies. Then rank the estimation methods by

their relative performance. Ranks are comparable across scenarios, so our �nal criterion will be the average

rank across all scenarios. These numbers are listed in Table 2.

The parametric estimator performs best, which is no surprise since our simulation models consist of

only parametric copula families. We included it in this study mainly to get a sense of what is possible in each

scenario. Remarkably, it is outperformed in very few cases by a nonparametric estimator. This is due to the

need for structure selection which will be discussed in more detail later on.

Among the nonparametric estimators, the kernel estimators (tll2, tll1, tll0) perform best, followed

by the spline methods (pspl1, pspl2) which perform as well as the worst kernel estimator tll0. The Bern-

stein estimators (pbern, bern) perform worst. Within these three classes, the accuracy improves mostly by

how complex the estimation method is: going from regular Bernstein copulas to penalized ones; and going

from local constant, to local linear, to local quadratic likelihood. It is the other way around for the B-spline

methods, but the di�erence in the average rank is minuscule.

We will �nd that this relative ranking is fairly robust across scenarios. In the following analysis, we treat

it as the benchmark ranking and focus on deviations from it.

5.2 Strength and type of dependence

By looking at the scale in each panel, we see that the performance of all estimators gets worse for increas-

ing strength of dependence and increasing proportion of tail dependent families. This is explained by the

behavior of the true densities. Many copula densities (and their derivatives) explode at a corner of the unit

square. From the pair-copula families in our simulation model, only the Frank copula is bounded. Within

each family, the tails explode faster when the strength of dependence increases. And tail dependence means

that the tails explode particularly fast. Exploding curves are di�cult to estimate for nonparametric estima-

tors because their asymptotic bias and variance are usually proportional to the true densities’ derivatives.

Our results give evidence that this e�ect transfers to �nite samples.

The estimators’ response to these di�culties is the main driver behind their relative performance. In

most scenarios, the ranking of estimators is similar to the benchmark rankings. But there are deviations. Let

us walk through the scenarios one by one.

– weak, no tail dependence: pbern1 and pspl1 perform better than pspl2, the kernel estimators, and even

the parametric estimator for n = 400. For n = 2 000, the parametric estimator gets ahead and the penal-

ized methods are on par with tll1 and tll2.
– weak, both: pbern1 and pspl1 perform better than pspl2 and tll0 for n = 400, and comparable for

n = 2 000.

– weak, only tail dependent copulas: similar to the benchmark ranking.

– strong, no tail dependence: bspl2 beats tll0 and tll1 for n = 400 and is on par for n = 2 000.

– strong, both: similar to benchmark ranking.

– strong, only tail dependent copulas: similar to benchmark ranking.

Overall, the penalized estimators tend to do better under weak dependence and only little tail dependence,

whereas the kernel estimators do better in the other scenarios. The method tll2 is the top performer in all

but a few cases.
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5.3 Sample size and dimension

When the sample size increases, the estimators become more accurate. Any reasonable estimator should

satisfy this property. The kernel estimators and the non-penalized Bernstein estimator seem to bene�t more

from an increased sample size. The e�ect is most obvious in the weak dependence, no tail dependence case.

This has an explanation: theoretically, the number of knots used by the penalized estimators should increase

with the sample size. But our implementation uses a �xed number of knots, as the computational burden is

already substantial compared with the other methods (see subsection 5.5). All other methods adapt their

smoothing parameterization to the sample size. It is very likely that the penalized methods improve when

the number of knots is further increased.

Comparing a pair of panels corresponding to d = 5 and d = 10, we see very little di�erences.We conclude

that the results are robust to changes in the dimensionality.

5.4 Structure selection

The �rst aspect we want to discuss is the loss in accuracy caused by the need to select the tree structure.

Recall that the three subsequent boxes for each estimator correspond to: estimation under the true structure

(in practice unknown), selection based on Kendall’s τ, selection based on cAIC.

The IAEs for the two selection methods are always higher than the ‘oracle’ results with known structure.

This makes sense: the true model is a simpli�ed vine copula; if the true structure is known, the models are

correctly speci�ed and all estimators are consistent. In practice, the true structure is unknown, and a di�erent

structure will be selected most of the time. For the selected structure, there is no guarantee that the model is

still simpli�ed or that the estimators are consistent. For more details, we refer to [37] and section 8 in [28].

Overall, the average loss in accuracy when going from the true to a heuristically selected structure in-

creases with strength of dependence and prevalence of tail dependence. But the extent of this e�ect varies

between estimation methods. The parametric estimator su�ers the most substantial losses. In fact, the para-

metric estimator’s performance is often very close to that of the best nonparametric estimator when the struc-

ture is unknown. This is quite remarkable considering thatwe simulate fromparametricmodels. Interestingly,

the loss for the penalized Bernstein and B-spline methods (pbern, pspl1, pspl2) is negligible in most sce-

narios when cAIC is used—but not when Kendall’s τ is used. This is a distinct property of these penalized

methods. The non-penalized Bernstein and kernel methods perform similarly for the two structure selection

criteria. In most scenarios, the relative performance ordering of the estimators is the same for each type of

structure. But there are a few cases (strong dependence, n = 400) where the bspl2 estimator is worse than

tll0 or tll1 with Kendall’s τ, but better with cAIC.

The results give evidence that the cAIC is the better criterion in terms of the estimators’ accuracy. But it

also makes the vine copula estimators more costly to �t (see subsection 3.3). So there is a trade-o� between

speed and accuracy. It usually depends on the problem at hand which to prioritize. We will investigate this

issue further in the next section.

5.5 Computation time

Table 3 lists the average computation time¹ required to �t a vine copula and evaluate its density on 1 000

importance Monte-Carlo samples. The results are divided into the combinations of dimension d and sample

size n.
Let us �rst focus on the selection criterion. We clearly see that the computation time increases substan-

tially for all estimators when cAIC is used instead of Kendall’s τ. This e�ect size di�ers, but is usually a factor

of around two or three.

1 The time was recorded on a single thread of a 8-way Opteron (Dual-Core, 2.6 GHz) CPU with 64GB RAM.
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Table 3: Average computation time (in seconds) required for estimation and selection of one vine copula model.

d n criterion par bern pbern pspl1 pspl2 tll0 tll1 tll2
5 400 τ 7 3 788 758 517 3 4 6

cAIC 19 10 1000 1175 786 10 11 13
2000 τ 34 19 1578 1455 1394 7 12 16

cAIC 91 31 2163 2336 2243 25 32 35
10 400 τ 33 17 2983 3183 2205 14 19 29

cAIC 98 49 5292 6110 4156 48 55 65
2000 τ 159 65 6553 6694 6515 35 56 71

cAIC 472 139 11992 13514 12394 127 158 173

The fastest two estimators are the simplest ones: bern and tll0. The other two kernel estimators are in

the same ballpark, but the computation time increases slightly with the order of the polynomial. Only slightly

slower is the parametric estimator. The reason is that the parametric estimator has to iterate through several

di�erent copula families before it can select the �nal model. The penalized estimators are roughly two orders

of magnitude slower than their competitors. Take for example the case d = 10 and n = 2 000, where most

estimators take around one minute (using τ), but the penalized estimators take more than one and a half

hours.

The large di�erence in computational demand is caused by the penalized estimation problem. One has

to optimize over more than 100 parameters with more than 100 side constraints. Even worse, such a problem

has to be solvedmultiple times until an optimal choice for the penalty parameter λ has been found. Reducing

K (the number of knots) does signi�cantly reduce this burden, but also limits the �exibility of the estimators.

In the end, the statistician has to choose which K yields the best balance between speed and accuracy.

5.6 Limitations

The referees pointed out some limitations of our study which are addressed in the following.

5.6.1 Performance measure

All results focus on a single performancemeasure and therefore only provide a limited viewon the estimators’

performance.Although this is true,we considered several othermeasures inpreliminary versions of this study

and found the results to be quite robust with respect to the measure.

5.6.2 Estimation of marginal distributions

The study neglects the fact that observations from the copula are never observed and one has to rely on

pseudo-observations that depend on estimated marginal distributions. An extensive simulation study in [22]

revealed that this can be a problem in misspeci�ed fully parametric models. But the issue is largely resolved

when the margins are estimated nonparametrically. In this case, maximum likelihood estimators are unbi-

ased and only slightly less e�cient [14].

In a purely nonparametric context, it is even less of an issue. In fact, many authors have found that er-

rors stemming from estimating the marginal distributions are asymptotically negligible when estimating the

copula density, see e.g., [13, 18, 27]. This is explained by the fact that distribution functions can be estimated

consistently at the parametric rate, whereas density estimators are bound to (slower) nonparametric rates.

Accordingly, we can expect similar results to the ones presented even if margins were treated unknown.
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5.6.3 Choice of smoothing parameters

It is a common theme in nonparametric estimation that the quality of estimators depends heavily on the

choice of smoothing parameters. This is certainly also the case for the estimators considered in this study.

However, we do not think it is feasible to assess the sensitivity of our results to this choice:

– Smoothing parameters are hardly comparable across estimationmethods because they arrive at the den-

sity estimate in fundamentally di�erent ways.

– There are too many smoothing parameters in a vine copula model: There are 10 (d = 5) resp. 45 (d = 10)

pair-copulas, and for each pair-copula there are between one and three smoothing parameters (depend-

ing on the estimation method).

– Due to the sequential nature of the joint estimator, pair-copula estimators in later trees are a�ected by the

estimates in earlier trees. This leads to signi�cant interactions between smoothingparameters at di�erent

levels.

In our study, all smoothing parameters were selected by automatic procedures that are state-of-the-art. This

realistically re�ects statistical practice. But one should keep inmind that the performance of most estimators

can likely be improved by advances in automatic selection procedures.

6 Illustration with real data
In the simulation study, the parametric estimator performed best in virtually all scenarios. But this is simply

a consequence of simulating from parametric models. Real data do not always behave that nicely and non-

parametric methods are required to appropriately capture the dependence. Such a case is illustrated in the

following real-data example.

We consider a data set representative of measurements taken on images

from the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) Telescopes

(https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope) with 19 020 observations for eleven

di�erent attributes, but focus only on gamma observations.

To show exemplary results of the di�erent nonparametric copula density estimators, we select a random

subset (n = 2 000) from the MAGIC data with respect to to the three variables fConc1, fM3Long and fM3Trans.

We compute pseudo-observations from the data by applying themarginal empirical distribution functions to

each variable. Figure 5 shows scatter plots of the three pairs of the pseudo-observations. The shapes we see

are di�erent from what we know from popular parametric families. We �t several copula density estimators

to each pair and show the results in Figure 6. The �rst column of Figure 6 shows the �tted pair-copula density

between fConc1 (U
5
) and fM3Long (U

7
), the second column between fConc1 (U

5
) and fM3Trans (U

8
) and the

third column contains the copula density between fM3Long (U
7
) and fM3Trans (U

8
).

The �rst pair of variables fConc1 (U
5

) and fM3Long (U
7

) a lot of pseudo-observations accumulate around

the point (0, 1), which is re�ected as high density peaks in all �tted copula densities. But for the accumulation

around the point (1, 0.3), we observe a di�erence between the nonparametric estimators bern, pspl2 and

ttl2 and the parametric copula density, which does not mirror this accumulation.

For the second pair, fConc1 (U
5

) and fM3Trans (U
8

), the estimated density varies considerably between

methods. Estimates of pspl2 and ttl2 show peaks around the points (0, 0) and (0, 1), which re�ects the

large concentration of points in the scatter plot in Figure 5. The estimators bern and par do not contain these

peaks. We observe similar di�erences for the estimated densities for the third data pair, presented in the right

column of Figure 5. While bern, pspl2 and ttl2 show density peaks around the accumulation points (1, 0)

and (1, 1), but the estimated parametric copula does not exhibit these structures of the data.

The previous examples have illustrated situations, in which parametric estimator fails because of its lack

of �exibility. In such situations, nonparametric methods are required to adequately capture the true depen-

dence structure. However, for illustrations, we merely looked at two unconditional pairs of variables, not a

full dependence model.
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Figure 5: Scatterplots of pseudo observation ranks for pairs (left) fConc1 (U
5
) and fM3Long (U

7
), (middle) fConc1 (U

5
) and

fM3Trans (U
8
) and (right) fM3Long (U

7
) and fM3Trans (U

8
) from the MAGIC data set (n = 2 000).

To analyze the the performance of the estimators in an application, we estimate nonparametric vine cop-

ulas for the complete MAGIC data set with eleven attributes focusing on gamma observations. Because the

true density is unknown in applications, we assess the performance of the estimators via cross-validation.

Similar to our simulation study, we randomly draw a subset U
train

of the data of sizes n = 400, 2 000, apply

the estimators, and calculate the mean out-of-sample log-likelihood on 1 000 randomly selected remaining

observations U
test

, i.e.,

`(U
test

) =

1

1 000

1 000∑
i=1

ln ĉ(U(i)
test

),

where ĉ is a vine copula density estimator based on U
train

. This is repeated N = 100 times for sample sizes

n = 400 and n = 2 000. The results are summarized as box plots in Figure 7 for all estimators and structure

selection based on Kendall’s τ (left box) and cAIC (right box).

The parametric estimator performs unsatisfactory for n = 400 since it varies enormously for both data

sets. But also for n = 2 000, the parametric estimator is outperformed by most nonparametric alternatives.

The performance of the nonparametric methods varies notably between methods. The methods bern and

tll1donot performwell, but theothermethods clearly outperformpar. Furthermore, theperformancedi�ers

signi�cantly with respect to the structure selection criterion for bern1 and pspl1, pspl2. For small sample

size (n = 400) and using Kendall’s τ as selection criterion, tll0 results with highest mean, directly followed

by pspl2. But choosing cAIC instead, the log-likelihood of pspl2 increases, but not for tll0. The situation

is similar for n = 2 000. We conclude that the more sophisticated nonparametric methods adequately re�ect

the distribution of the data. In contrast, the dependence structure observed in Figure 5 can not be captured

adequately with standard parametric models.

7 Conclusion
This articled compared existing methods for nonparametric estimation of simpli�ed vine copula densities.

The estimators considered are the non-penalized Bernstein estimator, the penalized Bernstein estimator, pe-

nalized B-spline estimators (linear and quadratic), and kernel weighted local likelihood estimators (local

constant, linear, and quadratic). We compared these methods by an extensive simulation study and on two

real data sets.

The simulation study comprises several scenarios for sample size, dimension, strength of dependence,

and tail dependence. The simulation models are set up as parametric vine copulas with randomized vine

structure, pair-copula families, and parameters. Overall, the kernel methods were found to perform best

(especially the local quadratic version), followed by the penalized B-spline estimators. The Bernstein esti-
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Figure 6: Exemplary density plots for MAGIC data (n = 2 000). 1st row: Bernstein estimator bern, 2nd row: penalized quadratic
B-splines estimator pspl2, 3rd row: kernel estimator tll2, 4th row: parametric estimator par.
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Figure 7: The box plots show the mean log-likelihood values attained by the di�erent estimation methods. Each boxplot on the
left hand side: structure selection based on Kendell’s τ and each boxplot on the right hand side: structure selection based on
cAIC.

mators performed worst. An exception to this pattern was found in scenarios with small sample size, weak

dependence, and no tail dependence. Here, the penalized B-spline and Bernstein estimators outperformed

the kernel methods. Additionally, we demonstrated the need for nonparametric methods on real data whose

dependence structure cannot be adequately captured by a the parametric estimator.

Overall, we found that no estimator is uniformly better than the others; it depends on the data which is

to be preferred. Our analysis highlighted which factors drive the performance of the various methods, and

which methods should be preferred for certain scenarios. In applications, statisticians can determine the

characteristics of their data by an exploratory analysis, and make a well-informed choice based on these

results.
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