TETRAVALENT ARC-TRANSITIVE GRAPHS OF ORDER $3p^2$

MOHSEN GHASEMI

Department of Mathematics, Urmia University
Urmia 57135, Iran

E-mail: m.ghasemi@urmia.ac.ir

Abstract

Let s be a positive integer. A graph is s-transitive if its automorphism group is transitive on s-arcs but not on $(s+1)$-arcs. Let p be a prime. In this article a complete classification of tetravalent s-transitive graphs of order $3p^2$ is given.

Keywords: s-transitive graphs, symmetric graphs, Cayley graphs.

2010 Mathematics Subject Classification: 05C25, 20B25.

1. Introduction

In this paper we consider undirected finite connected graphs without loops or multiple edges. For a graph X we use $V(X)$, $E(X)$ and $\text{Aut}(X)$ to denote its vertex set, edge set and its full automorphism group, respectively. For $u,v \in V(X)$, $\{u,v\}$ is the edge incident to u and v in X, and $N(u)$ is the neighborhood of u in X, that is, the set of vertices adjacent to u in X. A graph X is locally primitive if for any vertex $v \in V(X)$, the stabilizer $\text{Aut}(X)_v$ of v in $\text{Aut}(X)$ is primitive on $N(v)$. An s-arc in a graph is an ordered $(s+1)$-tuple $(v_0, v_1, \ldots, v_{s-1}, v_s)$ of vertices of the graph such that v_{i-1} is adjacent to v_i for $1 \leq i \leq s$, and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s-1$. For a subgroup $G \leq \text{Aut}(X)$, a graph X is said to be (G,s)-arc-transitive or (G,s)-regular if G acts transitively or regularly on the set of s-arcs of X, respectively. A (G,s)-arc-transitive graph is said to be (G,s)-transitive if it is not $(G,s+1)$-arc-transitive. In particular, an $(\text{Aut}(X),s)$-arc-transitive, $(\text{Aut}(X),s)$-regular or $(\text{Aut}(X),s)$-transitive graph is simply called an s-arc-transitive, s-regular or s-transitive graph, respectively. Note that 0-arc-transitive means vertex-transitive, and 1-arc-transitive means arc-transitive or symmetric. A graph is edge-transitive if $\text{Aut}(X)$ is transitive on $E(X)$.
Edge-transitive graphs or s-transitive graphs of small valencies have received considerable attention in the literature. For instance, Tutte [29] initiated the investigation of cubic s-transitive graphs by proving that there exist no cubic s-transitive graphs for \(s \geq 6 \), and later much subsequent work was done along this line (see [7, 8, 9, 10, 11, 12, 13, 14, 24]). Gardiner and Praeger [15, 16] generally explored the tetravalent symmetric graphs by considering their automorphism groups. Recently, Li et al. [22] classified all vertex-primitive symmetric graphs of valency 3 or 4. Moreover, Weiss [31] proved that if \(X \) is s-transitive, then \(s \in \{1, 2, 3, 4, 5, 7\} \). Let \(p \) be a prime. Conder [6] showed that for a fixed integer \(n \) and any integer \(s > 1 \), there are only finitely many cubic s-transitive graphs of order \(np \). Li [20] generalized this result to connected symmetric graphs of any valency, and he also posed the following problem: for small values \(n \) and \(k \), classify vertex-transitive locally primitive graphs of order \(np \) and valency \(k \).

In this paper we classify all symmetric graphs of order \(np \) and valency \(k \) for certain values of \(n \) and \(k \). The classification of s-transitive graphs of order \(np \) and of valency 3 or 4 can be obtained from [4, 5, 30], where \(1 \leq n \leq 3 \). Feng et al. [10, 12, 13] classified cubic s-transitive graphs of order \(np \) with \(n = 4, 6, 8 \) or 10. Recently, Zhou and Feng [35, 36] classified tetravalent s-transitive graphs of order \(4p \) or \(2p^2 \). Also Ghasemi and Zhou [18] classified tetravalent s-transitive graphs of order \(4p^2 \). In this paper, we prove that there are no tetravalent s-transitive graphs of order \(3p^2 \), for \(s > 1 \).

2. Preliminaries

In this section, we introduce some notation and definitions as well as some preliminary results which will be used later in the paper.

For a regular graph \(X \), use \(d(X) \) to represent the valency of \(X \), and for any subset \(B \) of \(V(X) \), the subgraph of \(X \) induced by \(B \) will be denoted by \([B] \).

For a positive integer \(n \), denote by \(Z_n \) the cyclic group of order \(n \) as well as the ring of integers modulo \(n \), by \(Z_n^* \) the multiplicative group of \(Z_n \) consisting of numbers coprime to \(n \), by \(D_{2n} \) the dihedral group of order \(2n \), and by \(C_n \) and \(K_n \) the cycle and the complete graph of order \(n \), respectively. We call \(C_n \) an \(n \)-cycle.

Let \(G \) be a permutation group on a set \(\Omega \) and \(\alpha \in \Omega \). Denote by \(G_\alpha \) the stabilizer of \(\alpha \) in \(G \), that is, the subgroup of \(G \) fixing the point \(\alpha \). We say that \(G \) is semiregular on \(\Omega \) if \(G_\alpha = 1 \) for every \(\alpha \in \Omega \) and regular if \(G \) is transitive and semiregular. For any \(g \in G \), \(g \) is said to be semiregular if \(\langle g \rangle \) is semiregular. The following proposition gives a characterization for Cayley graphs in terms of their automorphism groups.

Proposition 2.1 (Lemma 16.3 [2]). A graph \(X \) is isomorphic to a Cayley graph on a group \(G \) if and only if its automorphism group has a subgroup isomorphic
to \(G \), acting regularly on the vertex set of \(X \).

Let \(X \) be a connected symmetric graph and let \(G \leq \text{Aut}(X) \) be arc-transitive on \(X \). For a normal subgroup \(N \) of \(G \), the quotient graph \(X_N \) of \(X \) relative to the orbits of \(N \) on \(V(X) \) and with two orbits adjacent if there is an edge in \(X \) between those two orbits. If \(X_N \) and \(X \) have the same valency, then \(X \) is called a normal cover of \(X_N \). Let \(X \) be a connected tetravalent symmetric graph and \(N \) an elementary abelian \(p \)-group. A classification of connected tetravalent symmetric graphs was obtained when \(N \) has at most two orbits in [15] and a characterization of such graphs was given when \(X_N \) is a cycle in [16].

The following proposition is due to Praeger et al. (refer to Theorem 1.1 [15] and [27]).

Proposition 2.2. Let \(X \) be a connected tetravalent \((G,1)\)-arc-transitive graph. For each normal subgroup \(N \) of \(G \), one of the following holds.

1. \(N \) is transitive on \(V(X) \),
2. \(X \) is bipartite and \(N \) acts transitively on each part of the bipartition,
3. \(N \) has \(r \geq 3 \) orbits on \(V(X) \), the quotient graph \(X_N \) is a cycle of length \(r \), and \(G \) induces the full automorphism group \(D_{2r} \) on \(X_N \),
4. \(N \) has \(r \geq 5 \) orbits on \(V(X) \), \(N \) acts semiregularly on \(V(X) \), the quotient graph \(X_N \) is a connected tetravalent \(G/N \)-symmetric graph, and \(X \) is a \(G \)-normal cover of \(X_N \).

Moreover, if \(X \) is also \((G,2)\)-arc-transitive, then case (3) cannot happen.

The following proposition characterizes the vertex stabilizer of the connected tetravalent \(s \)-transitive graphs, which can be deduced from Lemma 2.5 [23], or Proposition 2.8 [22], or Theorem 2.2 [21].

Proposition 2.3. Let \(X \) be a connected tetravalent \((G,s)\)-transitive graph. Let \(G_v \) be the stabilizer of a vertex \(v \in V(X) \) in \(G \). Then \(s = 1, 2, 3, 4 \) or 7. Furthermore, either \(G_v \) is a 2-group for \(s = 1 \), or \(G_v \) is isomorphic to \(A_4 \) or \(S_4 \) for \(s = 2 \); \(A_4 \times \mathbb{Z}_3 \), \(\mathbb{Z}_3 \times S_4 \), \(S_3 \times S_4 \) for \(s = 3 \); \(\mathbb{Z}_3^3 \times \text{GL}(2,3) \) for \(s = 4 \); or \([3^5] \times \text{GL}(2,3) \) for \(s = 7 \), where \([3^5] \) represents an arbitrary group of order \(3^5 \).

Let \(X \) be a tetravalent one-regular graph of order \(3p^2 \). If \(p \leq 13 \), then \(|V(X)| = 12, 27, 75, 147, 363, \) or 507. Now, a complete census of the tetravalent arc-transitive graphs of order at most 640 has been recently obtained by Potočnik, Spiga and Verret [25, 26]. Therefore, a quick inspection through this list (with the invaluable help of magma (see [3])) gives the number of tetravalent one-regular graphs in the case \(p \leq 13 \). The following Proposition can be extracted from Theorem 3.4 [17].
Proposition 2.4. Let \(p \) be a prime and \(p > 3 \). A tetravalent graph \(X \) of order \(3p^2 \) is 1-regular if and only if one of the following holds:
(i) \(X \) is a Cayley graph over \(\langle x, y | x^p = y^{6p} = [x, y] = 1 \rangle \), with connection set \(\{y, y^{-1}, xy, x^{-1}y^{-1}\} \),
(ii) \(X \) is a connected arc-transitive circulant graph with respect to every connection set \(S \),
(iii) \(X \) is one of the graphs described in Lemma 8.4 [16].

Proposition 2.5 (Theorem 1.2 [16]). Let \(X \) be a connected tetravalent symmetric graph of order \(3p^2 \) where \(p > 5 \) is a prime. Let \(A = \text{Aut}(X) \) and let \(N = \mathbb{Z}_p^2 \) be a minimal normal subgroup of \(A \). Let \(K \) denote the kernel of \(G \) acting on \(N \)-orbits. If the quotient graph \(X_N \) is a 3-cycle, then \(K_v \cong \mathbb{Z}_2 \), and \(X \) is one-regular.

Finally in the following example we introduce \(G(3p, r) \), which was first defined in [5].

Example 2.6. For each positive divisor \(r \) of \(p - 1 \) we use \(H_r \) to denote the unique subgroup of \(\text{Aut}(\mathbb{Z}_p) \) of order \(r \), which is isomorphic to \(\mathbb{Z}_r \). Define a graph \(G(3p, r) \) by \(V(G(3p, r)) = \{x_i | i \in \mathbb{Z}_3, x \in \mathbb{Z}_p\} \), and \(E(G(3p, r)) = \{x_iy_i+1 | i \in \mathbb{Z}_3, y \in \mathbb{Z}_p, y-x \in H_r\} \). Then \(G(3p, r) \) is a connected symmetric graph of order \(3p \) and valency \(2r \). Also \(\text{Aut}(G(3p, p-1)) \cong S_p \times S_3 \). For \(r \neq p - 1 \), \(\text{Aut}(G(3p, r)) \) is isomorphic to \((\mathbb{Z}_p.H_r).S_3 \) and acts regularly on the arc set, where \(X.Y \) denotes an extension of \(X \) by \(Y \).

3. Main Results

In this section, we classify tetravalent \(s \)-transitive graphs of order \(3p^2 \) for each prime \(p \). To do so, we need the following lemmas.

Lemma 3.1. Let \(p \) be a prime and let \(n > 1 \) be an integer. Let \(X \) be a connected tetravalent graph of order \(3p^n \). If \(G \leq \text{Aut}(X) \) is transitive on the arc set of \(X \), then every minimal normal subgroup of \(G \) is solvable.

Proof. Let \(v \in V(X) \). Since \(G \) is arc-transitive on \(X \), by Proposition 2.3, \(G_v \) either is a 2-group or has order dividing \(2^4 \cdot 3^6 \). It follows that \(|G| \) is divisible by \(2^4 \cdot 3^7 \cdot p^n \) or \(2^6 \cdot 3 \cdot p^n \) for some integer \(m \). Let \(N \) be a minimal normal subgroup of \(G \).

Suppose that \(N \) is non-solvable. Then \(p > 3 \) because a \(\{2,3\} \)-group is solvable by a theorem of Burnside Theorem 8.5.3 [28]. Since \(N \) is minimal, it is a product of isomorphic non-abelian simple groups. Since \(|N| \) is divisible by \(2^4 \cdot 3^7 \cdot p^n \), or \(2^6 \cdot 3 \cdot p^n \) by [19], pp.12–14, each direct factor of \(N \) is one of the following: \(A_5, A_6, PSL(2, 7), PSL(2, 8), PSL(2, 17), PSL(3, 3), PSU(3, 3) \) or \(PSU(4, 2) \).

An inspection of the orders of such groups gives \(n = 2 \) and \(|N| \) is divisible by \(2^4 \cdot 3^7 \cdot p^n \). It follows that \(X \) is \((G, 2) \)-arc transitive and we have \(N \cong A_5 \times A_5 \). Then \(p = 5 \) and
$|X| = 75$. However, from [32] we know that all tetravalent arc-transitive graphs of order 75 are 1-transitive, a contradiction.

Lemma 3.2. Let X be a connected tetravalent G-arc-transitive graph of order $3p^2$, where $p > 13$. Assume that G has a normal subgroup N of prime order. If N has at least three orbits on $V(X)$, then either X_N is of valency 4 or G is regular on the arcs of X.

Proof. By our assumption N has at least three orbits on $V(X)$. If N has $r \geq 5$ orbits on $V(X)$, then by Proposition 2.2, X_N has valency 4 and X is a normal cover of X_N. Thus we may suppose that N has $r \geq 3$ orbits. Thus $d(X_N) = 2$ and $|X_N| = 3p$ or $|X_N| = p^2$.

First suppose that $|X_N| = 3p$. Thus $X_N \cong C_{3p}$ and hence $G/K \cong \text{Aut}(C_{3p}) \cong D_{6p}$. Let Δ and Δ' be two adjacent orbits of N in $V(X)$. Then the subgraph $[\Delta \cup \Delta']$ of X induced by $\Delta \cup \Delta'$ has valency 2. Since $p > 13$, one has $|\Delta \cup \Delta'| \cong C_{2p}$. The subgroup K^* of K fixing Δ pointwise also fixes Δ' pointwise. The connectivity of X and the transitivity of G/K on $V(X_N)$ imply that $K^* = 1$, and consequently, $K \leq \text{Aut}([\Delta \cup \Delta']) \cong D_{4p}$. Since K fixes Δ, one has $|K| \leq 2p$. It follows that $|G| = |G/K||K| \leq 12p^2$, and hence G is regular on the arcs of X.

Now suppose that $|X_N| = p^2$. Thus $X_N \cong C_{p^2}$. It follows that $G/K \cong D_{2p^2}$. Let Δ and Δ' be two adjacent orbits of N in $V(X)$. Then the subgraph $[\Delta \cup \Delta']$ of X induced by $\Delta \cup \Delta'$ has valency 2. Clearly, we have $|\Delta \cup \Delta'| \cong C_6$. The subgroup K^* of K fixing Δ pointwise also fixes Δ' pointwise. The connectivity of X and the transitivity of G/K on $V(X_N)$ imply that $K^* = 1$, and consequently, $K \leq \text{Aut}([\Delta \cup \Delta']) \cong D_{12}$. Since K fixes Δ, one has $|K| \leq 6$. It follows that $|G| = |G/K||K| \leq 12p^2$, and hence G is regular on the arcs of X. Now the proof is complete.

Theorem 3.3. Let p be a prime and let X be a connected tetravalent graph of order $3p^2$. Then X is s-transitive for some positive integer s if and only if it is isomorphic to one of the graphs in Proposition 2.4.

Proof. Let X be a tetravalent s-transitive graph of order $3p^2$ for a positive integer s. By [25, 26], we may assume that $p > 13$. If X is one-regular, then X is one of the graphs in Proposition 2.4 and so $s = 1$. In what follows, we assume that $p > 13$ and that X is not one-regular. Set $A = \text{Aut}(X)$ and let P be a Sylow p-subgroup. Then $|P| = p^2$ and by Lemma 3.1, A is solvable. First we prove a claim.

Claim 1. P is not normal in A.

Proof. Suppose to, the contrary that $P \triangleleft A$. If P is a minimal normal subgroup of A then by Proposition 2.5, X is one-regular, a contradiction. Suppose that P contains a non-trivial subgroup, say N, which is normal in A. Consider the
quotient graph X_N of X relative to the orbit set of N, and let K be the kernel of A on $V(X_N)$. Since $p > 13$, one has $|X_N| = 3p$. By Lemma 3.2 either X is a normal cover of X_N or $d(X_N) = 2$ and X is one-regular. Since X is not one-regular, we may suppose that $d(X_N) = 4$. By [30], $G(3p, 2)$ is the only tetravalent symmetric graph of order $3p$ (see Example 2.6). Also $|\text{Aut}(G(3p, 2))| = 12p$ and $G(3p, 2)$ is one-regular. Thus $|A/M| = 12p$ and so $|A| = 12p^2$. Thus X is one-regular, a contradiction.

Let M be the maximal normal 2-subgroup of A and assume $|M| > 1$. Consider the quotient graph X_M of X relative to the orbit set of M, and let K be the kernel of A acting on $V(X_M)$. Since $p > 13$, every orbit of M has length 2 or 4, a contradiction. So A has no non-trivial normal 2-subgroup.

Now we are ready to complete the proof. Let M be a minimal normal subgroup of A. Clearly, M is a 3-group or a p-group. First suppose that M is a p-group. Thus $|M| = p$ or p^2. If $|M| = p^2$, then $M = P$ is a Sylow p-subgroup of A. By Claim 1, P is not normal in A, a contradiction. Suppose that $|M| = p$. By Lemma 3.2 either X is a normal cover of X_M or $d(X_M) = 2$ and X is one-regular. Since X is not one-regular, we may suppose that $d(X_M) = 4$. By [30], $G(3p, 2)$ is the only tetravalent symmetric graph of order $3p$ (see Example 2.6). Also $|\text{Aut}(G(3p, 2))| = 12p$ and $G(3p, 2)$ is one-regular. Thus $|A/M| = 12p$ and so $|A| = 12p^2$. Thus X is one-regular, a contradiction.

Now suppose that M is a 3-group. Thus $|X_M| = p^2$. If $d(X_M) = 4$, then by Proposition 2.5, $K = M$ is semiregular on $V(X_M)$. Therefore $K = M \cong \mathbb{Z}_3$. Since $P > 13$, $PM = P \times M$ is abelian. Clearly, PM is transitive on $V(X)$. Thus PM is regular on $V(X)$, because $|PM| = 3p^2$. Thus X is a Cayley graph on abelian group of order $3p^2$. By Theorem 1.2 [1], X is normal. If PM is cyclic, then by [33] X is one-regular, a contradiction. Thus PM is not cyclic. Now by Proposition 3.3 [34], X is one-regular, a contradiction. If $d(X_M) = 2$, then $X_M \cong C_{p^2}$. By Lemma 3.2, X is one-regular, a contradiction.

References

Tetravalent Arc-transitive Graphs of Order $3p^2$

doi:10.1007/978-1-4684-8497-7

Group Theory and Algebraic Combinatorics, (Peking University, Beijing, 2008).

doi:10.1090/S0002-9947-01-02768-4

[22] C.H. Li, Z.P. Lu and D. Marušič, On primitive permutation groups with small sub-
doi:10.1016/j.jalgebra.2004.03.005

doi:10.1016/j.jctb.2005.07.003

(B) 10 (1971) 163–182.
doi:10.1016/0095-8956(71)90075-X

http://www.matapp.unimib.it/spiga/

[26] P. Potočnik, P. Spiga and G. Verret, Cubic vertex-transitive graphs on up to 1280
vertices.

[27] C.E. Praeger, An O’Nan-Scott theorem for finite quasiprimitive permutation groups
239.
doi:10.1112/jlms/s2-47.2.227

[28] D.J.S. Robinson, A Course in the Theory of Groups (Springer-Verlag, New York,
1982).

doi:10.1017/S0305004100023720

Theory (B) 58 (1993) 197–216.

doi:10.1007/BF02579337

[34] J. Xu and M.Y. Xu, Arc-transitive Cayley graphs of valency at most four on abelian
doi:10.1007/s10012-001-0355-z

Received 27 December 2012
Revised 4 July 2013
Accepted 4 July 2013