GRAPHIC SPLITTING OF COGRAPHIC MATROIDS

Naiyer Pirouz

Department of Mathematics, University of Pune
Pune - 411007, India

e-mail: naiyer.pirouz@gmail.com

Abstract

In this paper, we obtain a forbidden minor characterization of a cographic matroid \(M \) for which the splitting matroid \(M_{x,y} \) is graphic for every pair \(x, y \) of elements of \(M \).

Keywords: binary matroid, graphic matroid, cographic matroid, minor, splitting operation.

2010 Mathematics Subject Classification: 05B35, 05C50, 05C83.

1. Introduction

Fleischner [3] introduced the idea of splitting a vertex of degree at least three in a connected graph and used the operation to characterize Eulerian graphs. Figure 1 shows the graph \(G_{x,y} \) that is obtained from \(G \) by splitting away the edges \(x \) and \(y \) from the vertex \(v \).

Welsh [11] proved that a binary matroid is Eulerian if and only if its dual is bipartite.

It is easy to see that a binary matroid \(M \) is Eulerian if and only if the sum of columns of \(A \) is zero, where \(A \) is a matrix over \(GF(2) \) that represents \(M \). Raghunathan et al. [7] proved that a binary matroid \(M \) is Eulerian if and only if \(M_{x,y} \) is Eulerian for every pair of elements \(x \) and \(y \).
The matroid notations and terminology used here will follow Oxley [6]. We adopt the convention that every graph mentioned in this paper is loopless and coloopless.

Raghunathan et al. [7] extended the splitting operation from graphs to binary matroids as follows:

Definition 1.1. Let $M = M[A]$ be a binary matroid and suppose $x, y \in E(M)$. Let $A_{x,y}$ be the matrix obtained from A by adjoining the row that is zero everywhere except for the entries of 1 in the columns labelled by x and y. The splitting matroid $M_{x,y}$ is defined to be the vector matroid of the matrix $A_{x,y}$.

Example 1.2. Consider the Fano matroid $F_7 = M$ on the set $E = \{1, 2, 3, 4, 5, 6, 7\}$. Let A denote the standard matrix representation with respect to the basis $B = \{1, 2, 3\}$ of M over $GF(2)$, so that

\[
A = \begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{bmatrix}.
\]

Then splitting of M by the pair 2 and 4, i.e. the matroid $M_{2,4}$, is represented by the matrix

\[
A_{2,4} = \begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 & 0
\end{bmatrix}.
\]

Let $M(G)$ and $M^*(G)$ denote the cycle matroid and the cocycle matroid, respectively of a graph G. Various properties of a splitting matroid are obtained in [1, 2, 5, 7, 8, 9] and [10].

The splitting operation on a graphic matroid may not yield a graphic matroid. Shikare and Waphare [10] characterized graphic matroids whose splitting matroids for every pair of elements are also graphic. Also, cographicness of a matroid may not be preserved under the splitting operation. Borse, Shikare, and Dalvi [2] obtained a forbidden-minor characterization for this class.

![Figure 2](image-url)
Further, the splitting operation on a cographic matroid may not yield a graphic matroid. In this paper, we characterize those cographic matroids M for which $M_{x,y}$ is graphic for every pair $x, y \in E(M)$. The following is the main theorem.

Theorem 1.3. The splitting operation, by any pair of elements, on a cographic matroid yields a graphic matroid if and only if it has no minor isomorphic to any of the cycle matroids $M(G_1)$ and $M(G_2)$, where G_1 and G_2 are the graphs depicted in Figure 2.

2. **Graphic Splitting of Cographic Matroids**

Firstly, we give some results which are used in the proof of the main result.

Lemma 2.1 [7]. Let $M = (S, C)$ be a binary matroid on a set S together with the set C of circuits. Then $M_{x,y} = (S, C')$ with $C' = C_0 \cup C_1$, where $C_0 = \{ C \in C : x, y \in C \text{ or } x \notin C, y \notin C \}$; and $C_1 = \{ C_1 \cup C_2 : C_1, C_2 \in C, x \in C_1, y \in C_2, C_1 \cap C_2 = \emptyset \text{ and } C_1 \cup C_2 \text{ contains no member of } C_0 \}$.

Lemma 2.2 [5, 10]. Let x and y be elements of a binary matroid M and let $r(M)$ denote the rank of M. Then the following statements hold.

(i) $M_{x,y} = M$ if and only if x and y are in series in M or both x and y are coloops in M;

(ii) $r(M_{x,y}) = r(M) + 1$ if and only if $M \neq M_{x,y}$,

(iii) if x_1, x_2 are in series in M, then they are in series in $M_{x,y}$.

(iv) If C^* is a cocircuit of M containing x, y with $|C^*| \geq 3$, then $C^* - \{x, y\}$ is a cocircuit of $M_{x,y}$; and

(v) $M_{x,y}/\{x\}$ is Eulerian if and only if M is Eulerian.

Theorem 2.3 [6]. A binary matroid is graphic if and only if it has no minor isomorphic to F_7, F_7^*, $M^*(K_5)$ or $M^*(K_{3,3})$.

Theorem 2.4 [6]. A binary matroid is cographic if and only if it has no minor isomorphic to F_7, F_7^*, $M(K_5)$ or $M(K_{3,3})$.

Notation. For the sake of convenience, let $\mathcal{F} = \{ F_7, F_7^*, M^*(K_5), M^*(K_{3,3}) \}$.

Lemma 2.5. Let M be a cographic matroid and let $x, y \in E(M)$ such that $M_{x,y}$ is not graphic. Then there is a minor N of M with $\{x, y\} \subset E(N)$ such that $N_{x,y}/\{x\} \cong F$ or $N_{x,y}/\{x, y\} \cong F$ for some $F \in \mathcal{F}$ and further, N has no non-trivial series class except possibly a series class which contains x and y.

Proof. As in the proof of Theorem 2.3 in [10], there exists a minor N of M such that $N_{x,y}/\{x\} \cong F$ or $N_{x,y}/\{x, y\} \cong F$ for some $F \in \mathcal{F}$. If x and y are not in...
series in N, then N has no non-trivial series class. Suppose x and y are in series in N. Then, $N = N_{x,y}$. Since F does not have any 2-cocircuit, every 2-cocircuit of N must contain x or y. Hence N has at most one non-trivial series class.

Definition 2.6. Let M be a cographic matroid and let $F \in \mathcal{F}$. We say that M is minimal with respect to F if there exist two elements x and y of M such that $M_{x,y}/\{x\} \cong F$ or $M_{x,y}/\{x, y\} \cong F$ and further, M has no non-trivial series class except possibly a series class which contains x and y.

Corollary 2.7. Let M be a cographic matroid. For any $x, y \in E(M)$, the matroid $M_{x,y}$ is graphic if and only if M has no minor isomorphic to a minimal matroid with respect to any $F \in \mathcal{F}$.

Proof. The proof follows from Lemma 2.2 and Lemma 2.5.

Lemma 2.8. Let M be a minimal matroid with respect to F for some $F \in \mathcal{F}$ and let x, y be two elements of M such that either $M_{x,y}/\{x\} \cong F$ or $M_{x,y}/\{x, y\} \cong F$. Then

(i) M has neither loops nor coloops,

(ii) if $M_{x,y}/\{x, y\} \cong F$ or $M_{x,y}/\{x\} \cong M^*(K_5)$, then M has at most one 2-circuit.

Proof. The proof follows from Lemmas 2.1, 2.2 and the fact that F does not contain loops, coloops and 2-circuits.

Lemma 2.9 [10]. A graph is minimal with respect to the matroid F_7 or F_7^* if and only if it is isomorphic to one of the three graphs G_1, G_2 and G_3 in Figure 3.

![Figure 3](image)

Lemma 2.10 [10]. A graph is minimal with respect to the matroid $M^*(K_{3,3})$ if and only if it is isomorphic to one of the four graphs G_4, G_5, G_6 and G_7 presented in Figure 4.
Lemma 2.11 [10]. A graph is minimal with respect to the matroid $M^*(K_5)$ if and only if it is isomorphic to G_8 and G_9 presented in Figure 5.

Lemma 2.12. Let M be a cographic matroid. Then M is minimal with respect to the matroid F_7 or F_7^* if and only if M is isomorphic to one of the cycle matroids $M(G_1)$, $M(G_2)$ and $M(G_3)$, where G_1, G_2 and G_3 are the graphs in Figure 6.

Proof. From the matrix representation it follows that $M(G_1)_{x,y}/\{x\} \cong F_7$, $M(G_2)_{x,y}/\{x,y\} \cong F_7$ and $M(G_3)_{x,y}/\{x\} \cong F_7^*$. Therefore, $M(G_1)$, $M(G_2)$ and $M(G_3)$ are minimal with respect to F_7 or F_7^*.

Conversely, suppose M is minimal with respect to F_7 or F_7^*. Then there exist elements x, y such that $M_{x,y}/\{x\} \cong F_7$, or $M_{x,y}/\{x,y\} \cong F_7$, or $M_{x,y}/\{x\} \cong F_7^*$ or $M_{x,y}/\{x,y\} \cong F_7^*$. Suppose x and y are in series. Then, by Lemma 2.2(i), $M = M_{x,y}$. Therefore, M has F_7 or F_7^* as a minor, which is a contradiction to Theorem 2.4. Hence x and y are not in series in M. Thus, no two elements of M are in series in M. Now, the proof follows from Lemma 2.9.
Lemma 2.13. Let M be a cographic matroid. Then M is minimal with respect to the matroid $M^*(K_{3,3})$ or $M^*(K_5)$ if and only if M is isomorphic to one of $M(G_i)$ for $i = 5, 6, 7, 12$ and to one of $M^*(G_j)$ for $j = 4, 8, 9, 10, 11, 13, 14, 15$, where the graphs G_i’s and G_j’s are shown in Figure 7.

Proof. From the matrix representation, it follows that

- $M^*(G_4)_{x,y}/\{x\} \cong M^*(K_{3,3})$, $M(G_5)_{x,y}/\{x\} \cong M^*(K_{3,3})$,
- $M(G_6)_{x,y}/\{x,y\} \cong M^*(K_{3,3})$, $M(G_7)_{x,y}/\{x,y\} \cong M^*(K_{3,3})$,
- $M^*(G_8)_{x,y}/\{x,y\} \cong M^*(K_{3,3})$, $M^*(G_9)_{x,y}/\{x,y\} \cong M^*(K_{3,3})$,
- $M^*(G_{10})_{x,y}/\{x,y\} \cong M^*(K_{3,3})$, $M^*(G_{11})_{x,y}/\{x,y\} \cong M^*(K_{3,3})$,
- $M^*(G_{12})_{x,y}/\{x\} \cong M^*(K_5)$, $M^*(G_{13})_{x,y}/\{x\} \cong M^*(K_5)$,
- $M^*(G_{14})_{x,y}/\{x\} \cong M^*(K_5)$ and $M^*(G_{15})_{x,y}/\{x,y\} \cong M^*(K_5)$.

Therefore, $M(G_i)$ for $i = 5, 6, 7, 12$ and $M^*(G_j)$ for $j = 4, 8, 9, 10, 11, 13, 14, 15$ are minimal with respect to the matroid $M^*(K_{3,3})$ or $M^*(K_5)$.

Conversely, suppose that M is a minimal matroid with respect to the matroid $M^*(K_{3,3})$ or $M^*(K_5)$. Then there exist elements x and y of M such that $M_{x,y}/\{x\} \cong M^*(K_{3,3})$ or $M_{x,y}/\{x,y\} \cong M^*(K_{3,3})$ or $M_{x,y}/\{x\} \cong M^*(K_5)$ or $M_{x,y}/\{x,y\} \cong M^*(K_5)$.

Suppose x and y are in series in M. Then, by Lemma 2.2(i), $M = M_{x,y}$. Hence $M/\{x\} \cong M^*(K_{3,3})$ or $M/\{x,y\} \cong M^*(K_{3,3})$ or $M/\{x\} \cong M^*(K_5)$ or $M/\{x,y\} \cong M^*(K_5)$; i.e. $M^* \setminus \{x\} \cong M(K_{3,3})$ or $M^* \setminus \{x,y\} \cong M(K_{3,3})$ or $M^* \setminus \{x\} \cong M(K_5)$ or $M^* \setminus \{x,y\} \cong M(K_5)$. Since x and y are in parallel in M^*, it follows that $M \cong M^*(G_i)$ for $i = 4, 8, 9, 13, 15$.

Figure 7
Now, suppose \(x \) and \(y \) are not in series in \(M \). Then \(M \neq M_{x,y} \). By Lemma 2.2(ii), \(r(M_{x,y}) = r(M) + 1 \).

Case (i). \(M_{x,y}/\{x\} \cong M^* (K_{3,3}) \). We claim that \(M \) is graphic. By Theorems 2.3 and 2.4, it suffices to prove that \(M \) does not have any of the matroids \(F_7 \), \(F_7^* \), \(M^* (K_{3,3}) \) and \(M^* (K_5) \) as a minor. As \(M \) is cographic, \(F_7 \) and \(F_7^* \) are excluded minors for \(M \). Further, \(|E(M)| = 10\) and, by Lemma 2.2(ii), \(r(M) = r(M_{x,y}) - 1 = r(M_{x,y}/\{x\}) = r(M^*(K_{3,3})) = 4 \). Hence \(M \) cannot have a minor isomorphic to \(M^*(K_5) \). Assume that \(M \) has a minor isomorphic to \(M^*(K_{3,3}) \). There exists an element \(q \) in \(M \) such that \(M \setminus q \cong M^*(K_{3,3}) \). Therefore \(M^*/q \cong M(K_{3,3}) \). Since \(M^*(K_{3,3}) \) is Eulerian, by Lemma 2.2(v), \(M \) is Eulerian and hence \(M^* \) is bipartite. By Lemma 2.8(i), \(q \) is neither a loop nor a coloop. Hence there exists a circuit \(C \) in \(M^* \) containing \(q \). Since \(C \) is an even circuit, \(C/q \) is an odd circuit in \(M^*/q \cong M(K_{3,3}) \), a contradiction. Thus \(M \) is graphic. Hence \(M \cong M(G) \), where \(G \) is a planar graph. It follows from the proof of Lemma 2.10 that \(M \cong M(G_3) \) of Figure 7.

Case (ii). \(M_{x,y}/\{x,y\} \cong M^* (K_{3,3}) \). If \(M \) is graphic, then by Lemma 2.10, \(M \cong M(G_6) \) or \(M(G_7) \) of Figure 7. Suppose that \(M \) is not graphic. As \(M \) is cographic, \(M \cong M^*(G) \) for some graph \(G \). Further, \(G \) has 7 vertices and 11 edges because \(r(M^*) = 6 \). As \(|E(M^*(K_{3,3}))| = 9\), \(r(M^*(K_{3,3})) = 4 \), \(M \setminus \{p\}/\{q\} \cong M^*(K_{3,3}) \) for some elements \(p,q \) of \(M \). Therefore \(M^*/\{p\} \setminus \{q\} \cong M(K_{3,3}) \). Since \(M \) has no 2-cocircuit, \(G \) is simple. Further, \(G \) is non-planar. By Lemma 2.8(ii), \(M \) has at most one 2-circuit and hence \(G \) has at most one vertex of degree 2. Therefore, the degree sequence of \(G \) is \((4,3,3,3,3,3,3)\), \((4,4,3,3,3,3,2)\) or \((5,3,3,3,3,3,2)\).

Consider the degree sequence \((5,3,3,3,3,2)\). A non-planar simple graph with degree sequence \((5,3,3,3,3,2)\) can be obtained from a non-planar simple graph with degree sequence \((4,3,3,3,3,2)\) or \((5,3,3,3,2,2)\) by adding a vertex of degree 2. But there is no non-planar simple graph with any of these two degree sequences see [4]. So, we discard the degree sequence \((5,3,3,3,3,3,2)\).

Since all cocircuits of \(M^*(K_{3,3}) \) are even and \(M \) has no odd cocircuit, the graph \(G \) cannot have an \(i \)-circuit containing both \(x \) and \(y \) for \(i = 3,4,5,7 \).

Now, consider the degree sequence \((4,3,3,3,3,3,3)\). By [10], there is only one non-planar simple graph of degree sequence \((4,3,3,3,3,3,3)\), as shown in Figure 8(iv).
In this graph every pair of edges is contained in an i-circuit, for some $i = 3, 4, 5, 7$. Hence we discard this graph.

A non-planar simple graph with degree sequence $(4,4,3,3,3,2)$ can be obtained from a non-planar simple graph with degree sequence $(3,3,3,3,3)$ or $(4,4,3,3,2,2)$ by adding a vertex of degree 2. It follows from [4] that every non-planar simple graph with degree sequence $(4,4,3,3,3,2)$ is isomorphic to one of the first three graphs of Figure 8. Graph (i) is discarded because every pair of edges is contained in an i-circuit for some $i = 3, 4, 5, 7$. The remaining two graphs are nothing but the graphs G_{10} and G_{11} in the statement of the lemma.

Case (iii). $M_{x,y}/\{x\} \cong M^*(K_5)$. If M is graphic, then, by Lemma 2.11, we get two graphs which one of them is a graph (iv) of Figure 8, which is already discarded. So, $M \cong M(G_{12})$ of Figure 7. Suppose that M is not graphic. As M is cographic, $M = M^*(G)$ for some non-planar graph G. Further, G has 6 vertices and 11 edges because $r(M^*) = 5$. By Lemma 2.8(i), M has no loops and coloops and also no two elements of M are in series, G is simple and has minimum degree at least 2. Also, by Lemma 2.8(ii), G has at most one vertex of degree 2. Hence the degree sequence of G is $(4,4,4,4,3,3)$ or $(4,4,4,4,4,2)$. By [4], the graph G_{14} of Figure 7 is the only one non-planar simple graph with the degree sequence $(4,4,4,4,3,3)$. Also, there is only one non-planar simple graph with degree sequence $(4,4,4,4,4,2)$ see [4]. In this graph, any pair of edges are either in a 3-circuit or a 4-circuit. If G is isomorphic to this graph, then x, y belong to a 3-cocircuit or a 4-cocircuit C^* of M and hence $C^* - \{x, y\}$ is a 1-cocircuit or a 2-cocircuit in $M_{x,y}/\{x\}$, a contradiction.

Case (iv). $M_{x,y}/\{x, y\} \cong M^*(K_5)$. First we show that M is graphic. Suppose that M is not graphic. Then M has $M^*(K_5)$ or $M^*(K_{3,3})$ as a minor. On the contrary, suppose M has $M^*(K_5)$ or $M^*(K_{3,3})$ as a minor. As $r(M) = 7$ and $|E(M)| = 12$, $M/\{p\}/\{q\} \cong M^*(K_5)$ for some elements $p, q \in E(M)$. This implies that $M^*/\{p\} \setminus \{q\} \cong M(K_5)$. Also, $M/\{n, m, s\} \cong M^*(K_{3,3})$ for some elements $n, m, s \in E(M)$. This implies that $M^*/\{n, m, s\} \cong M(K_{3,3})$. Thus $M \cong M^*(G)$, where G is a non-planar simple graph with 6 vertices and 12 edges. By Lemma 2.8(ii), G has at most one vertex of degree 2. Therefore the degree sequence of G is $(4,4,4,4,4), (5,4,4,4,4), (5,5,4,4,3,3), (5,5,5,3,3,3)$ or $(5,5,4,4,4,2)$. By [4], there is only one non-planar simple graph for each of these sequences, as shown in Figure 9.

![Figure 9](image-url)
It follows from the nature of cocircuits of $M^*(K_3)$, that both x, y do not belong to an i-circuit for $i = 3, 4$ nor to a j-cocircuit for $j = 3, 4, 5, 7$. These conditions are not satisfied by any pair of edges of the first 4 graphs of Figure 9. Hence we discard these graphs. Further, in the graph (v) of Figure 9 each pair of edges belongs to an i-circuit for $i = 3, 4$ and to a j-cocircuit for $j = 3, 4, 5, 7$, except the pairs $(1,4), (1,11)$ and $(4,7)$. For these pairs, there is a 5-circuit in $M_{x,y}/\{x, y\}$ and hence it cannot be isomorphic to $M^*(K_3)$ since $M^*(K_3)$ has 5 circuits of size 4 and 10 circuits of size 6. Thus G cannot be obtained from this graph. So M does not have $M^*(K_3)$ or $M^*(K_{3,3})$ as a minor. We conclude that M is graphic. Now the proof follows from Lemma 2.11.

Now, we use Lemmas 2.12 and 2.13 to prove Theorem 1.3.

Proof of Theorem 1.3. Let M be a cographic matroid. On combining Corollary 2.7 and Lemmas 2.12 and 2.13, it follows that $M_{x,y}$ is graphic for every pair $\{x, y\}$ of elements of M if and only if M has no minor isomorphic to any of the matroids $M(G_i), i = 1, 2, 3, 5, 6, 7, 12$ and $M^*(G_j), j = 4, 8, 9, 10, 11, 13, 14, 15$ where the graphs G_i and G_j are shown in the statements of the Lemmas 2.12 and 2.13. However, we have $M(G_3) \cong M(G_2) \setminus \{e\} \cong M(G_5) \setminus \{2, w\} \cong M(G_6)/\{2\} \setminus \{6, w\} \cong M(G_7)/\{2\} \setminus \{3, 5\} \cong M(G_{12}) \setminus \{1\}/\{v, 2\}; M^*(G_1) \cong M(G_4)/\{x, e\} \cong M(G_5)/\{x, y\} \cong M(G_6)/\{x, y\} \cong M(G_7)/\{2\} \setminus \{3, 5\} \cong M(G_{12}) \setminus \{1\}/\{v, 2\}; M^*(G_3) \cong M(G_{10})/\{9, y\}$ and $M^*(G_5) \cong M(G_{11})/\{6, y\} \setminus \{11\} \cong M(G_{13}) \setminus \{1, 2, x\} \cong M(G_{14})/\{y\} \setminus \{2, 3\} \cong M(G_{15}) \setminus \{e, f, x, y\}$.

This means that

$M(G_1) \cong M^*(G_4)/\{x, e\} \cong M^*(G_5)/\{x, y, f\} \cong M^*(G_9)/\{x, y, g\}$

$\cong M^*(G_{10})/\{9, y\} \setminus \{11\}$ and $M(G_3) \cong M^*(G_{11})/\{11\} \setminus \{6, y\}$

$\cong M^*(G_{13})/\{1, 2, x\} \cong M^*(G_{14})/\{2, 3\} \setminus \{y\} \cong M^*(G_{15})/\{e, f, x, y\}$.

Thus, $M_{x,y}$ is graphic if and only if M has no minor isomorphic to any of the matroids $M(G_i)$ for $i = 1, 3$. But the graphs G_i are precisely the graphs given in the statement of the theorem. This completes the proof.

Acknowledgements

I am thankful to the referees for recommending the present revised version of the rather elaborate original version of this paper.

References

Received 4 March 2013
Revised 7 February 2014
Accepted 7 February 2014