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Summary. This article presents the proof of Kolmogorov’s zero-one law in
probability theory. The independence of a family of σ-fields is defined and basic
theorems on it are given.
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The articles [8], [19], [2], [10], [12], [18], [20], [1], [15], [5], [21], [11], [3], [9], [7],
[6], [17], [4], [16], [14], and [13] provide the terminology and notation for this
paper.
For simplicity, we adopt the following convention: Ω, I are non empty sets,

F is a σ-field of subsets of Ω, P is a probability on F , D, E, F are families of
subsets of Ω, A, B, s are non empty subsets of F , b is an element of B, a is an
element of F , p, q, u, v are events of F , n is an element of N, and i is a set.
Next we state three propositions:

(1) For every function f and for every set X such that X ⊆ dom f holds if
X 6= ∅, then rng(f�X) 6= ∅.

(2) For every real number r such that r · r = r holds r = 0 or r = 1.
(3) For every family X of subsets of Ω such that X = ∅ holds σ(X) = {∅,Ω}.
Let Ω be a non empty set, let F be a σ-field of subsets of Ω, let B be a

subset of F , and let P be a probability on F . The functor Indep(B,P ) yielding
a subset of F is defined as follows:
(Def. 1) For every element a of F holds a ∈ Indep(B,P ) iff for every element b

of B holds P (a ∩ b) = P (a) · P (b).
Next we state several propositions:

(4) Let f be a sequence of subsets of F . Suppose for all n, b holds P (f(n)∩
b) = P (f(n)) · P (b) and f is disjoint valued. Then P (b ∩

⋃
f) = P (b) ·

P (
⋃
f).
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(5) Indep(B,P ) is a Dynkin system of Ω.

(6) For every family A of subsets of Ω such that A is intersection stable and
A ⊆ Indep(B,P ) holds σ(A) ⊆ Indep(B,P ).

(7) Let A, B be non empty subsets of F . Then A ⊆ Indep(B,P ) if and only
if for all p, q such that p ∈ A and q ∈ B holds p and q are independent
w.r.t. P .

(8) For all non empty subsets A, B of F such that A ⊆ Indep(B,P ) holds
B ⊆ Indep(A,P ).

(9) Let A be a family of subsets of Ω. Suppose A is a non empty subset of F
and intersection stable. Let B be a non empty subset of F . Suppose B is
intersection stable. If A ⊆ Indep(B,P ), then for all D, s such that D = B
and σ(D) = s holds σ(A) ⊆ Indep(s, P ).

(10) Let given E, F . Suppose that
(i) E is a non empty subset of F and intersection stable, and
(ii) F is a non empty subset of F and intersection stable.
Suppose that for all p, q such that p ∈ E and q ∈ F holds p and q are
independent w.r.t. P . Let given u, v. If u ∈ σ(E) and v ∈ σ(F ), then u
and v are independent w.r.t. P .

Let I be a set, let Ω be a non empty set, and let F be a σ-field of subsets of
Ω. A function from I into 2F is said to be a many sorted σ-field over I and F
if:

(Def. 2) For every i such that i ∈ I holds it(i) is a σ-field of subsets of Ω.
Let Ω be a non empty set, let F be a σ-field of subsets of Ω, let P be a

probability on F , let I be a set, and let A be a function from I into F . We say
that A is independent w.r.t. P if and only if:

(Def. 3) For every one-to-one finite sequence e of elements of I such that e 6= ∅
holds

∏
(P ·A · e) = P (

⋂
rng(A · e)).

Let Ω be a non empty set, let F be a σ-field of subsets of Ω, let I be a set, let
J be a subset of I, and let F be a many sorted σ-field over I and F . A function
from J into F is said to be a σ-section over J and F if:
(Def. 4) For every i such that i ∈ J holds it(i) ∈ F (i).

Let Ω be a non empty set, let F be a σ-field of subsets of Ω, let P be a
probability on F , let I be a set, and let F be a many sorted σ-field over I and
F . We say that F is independent w.r.t. P if and only if:
(Def. 5) For every finite subset E of I holds every σ-section over E and F is

independent w.r.t. P .

Let I be a set, let Ω be a non empty set, let F be a σ-field of subsets of Ω,
let F be a many sorted σ-field over I and F , and let J be a subset of I. Then
F �J is a function from J into 2F .
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Let I be a set, let J be a subset of I, let Ω be a non empty set, let F be a
σ-field of subsets of Ω, and let F be a function from J into 2F . Then

⋃
F is a

family of subsets of Ω.
Let I be a set, let Ω be a non empty set, let F be a σ-field of subsets of Ω,

let F be a many sorted σ-field over I and F , and let J be a subset of I. The
functor sigUn(F, J) yields a σ-field of subsets of Ω and is defined as follows:

(Def. 6) sigUn(F, J) = σ(
⋃
(F �J)).

Let I be a set, let Ω be a non empty set, let F be a σ-field of subsets of Ω, and
let F be a many sorted σ-field over I and F . The functor futSigmaFields(F, I)
yielding a family of subsets of 2Ω is defined as follows:

(Def. 7) For every family S of subsets of Ω holds S ∈ futSigmaFields(F, I) iff
there exists a finite subset E of I such that S = sigUn(F, I \ E).
Let I be a set, let Ω be a non empty set, let F be a σ-field of subsets of Ω,

and let F be a many sorted σ-field over I and F . Note that futSigmaFields(F, I)
is non empty.
Let I be a set, let Ω be a non empty set, let F be a σ-field of subsets of Ω, and

let F be a many sorted σ-field over I and F . The functor tailSigmaField(F, I)
yielding a family of subsets of Ω is defined as follows:

(Def. 8) tailSigmaField(F, I) =
⋂
futSigmaFields(F, I).

Let I be a set, let Ω be a non empty set, let F be a σ-field of subsets of Ω,
and let F be a many sorted σ-field over I and F . Note that tailSigmaField(F, I)
is non empty.
Let Ω be a non empty set, let F be a σ-field of subsets of Ω, let I be a non

empty set, let J be a non empty subset of I, and let F be a many sorted σ-field
over I and F . The functor MeetSections(J, F ) yields a family of subsets of Ω
and is defined by the condition (Def. 9).

(Def. 9) Let x be a subset of Ω. Then x ∈ MeetSections(J, F ) if and only if there
exists a non empty finite subset E of I and there exists a σ-section f over
E and F such that E ⊆ J and x =

⋂
rng f.

One can prove the following propositions:

(11) For every many sorted σ-field F over I and F and for every non empty
subset J of I holds σ(MeetSections(J, F )) = sigUn(F, J).

(12) Let F be a many sorted σ-field over I and F and J , K be non empty
subsets of I. Suppose F is independent w.r.t. P and J misses K. Let a,
c be subsets of Ω. If a ∈ MeetSections(J, F ) and c ∈ MeetSections(K,F ),
then P (a ∩ c) = P (a) · P (c).

(13) Let F be a many sorted σ-field over I and F and J be a non empty
subset of I. Then MeetSections(J, F ) is a non empty subset of F .
Let us consider I, Ω, F , let F be a many sorted σ-field over I and F , and let

J be a non empty subset of I. Observe that MeetSections(J, F ) is intersection
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stable.
The following proposition is true

(14) Let F be a many sorted σ-field over I and F and J , K be non empty
subsets of I. Suppose F is independent w.r.t. P and J misses K. Let given
u, v. If u ∈ sigUn(F, J) and v ∈ sigUn(F,K), then P (u∩v) = P (u) ·P (v).
Let I be a set, let Ω be a non empty set, let F be a σ-field of subsets of Ω, and

let F be a many sorted σ-field over I and F . The functor finSigmaFields(F, I)
yielding a family of subsets of Ω is defined as follows:

(Def. 10) For every subset S of Ω holds S ∈ finSigmaFields(F, I) iff there exists a
finite subset E of I such that S ∈ sigUn(F,E).
One can prove the following propositions:

(15) For every many sorted σ-field F over I and F holds tailSigmaField(F, I)
is a σ-field of subsets of Ω.

(16) Let F be a many sorted σ-field over I and F . If F is independent w.r.t.
P and a ∈ tailSigmaField(F, I), then P (a) = 0 or P (a) = 1.
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