FACILE SYNTHESIS OF SOME NEW 3-(2-(1,3-BENZOXAZIN-3-YL)-4-THIAZOLYL COUMARINS

M. Madan Mohan Reddy and V. Rajeswar Rao*
Department of Chemistry, National Institute of Technology, Warangal 506 004, A.P., India.

Abstract: 3-(2-Substituted benzalimino-4-thiazolyl)-coumarins (1) on reduction with NaBH₄ resulted in the formation of corresponding 3-(2-o-hydroxy benzyl hydrazino-4-thiazolyl)coumarins (2). These on condensation with formaldehyde gave the cycloproducts 3-(2-(1,3-benzoxazin-3-yl)-4-thiazolyl)coumarins (3).

Introduction

Coumarin nucleus is found in a variety of natural products which inhibit various pharmacological effects. Derivatives of coumarin also form compounds of important drugs having varied properties. There are excellent monographs and reviews articles describing the structure, synthetic reactions and properties of coumarin. Numerous reports have appeared in the literature describing antimicrobial, antiradiation and antiparasitic properties of the thiazole ring. Several 1,3-benzoxazine derivatives reported in the literature were found to possess antireserpine, analgesic, antiinflammatory, tranquilizing, sedative, bactericidal, bacteriostatic, smooth muscle relaxant and spermicidal activities. They are also used in the preparation of polymers. These compounds can be prepared in one-step by Mannich reaction of a primary amine with the appropriate phenol in presence of excess of formaldehyde. However, the yields in this method are some what less. Besides, some other methods for the preparation of these compounds are reported.

Prompted by the above observations and in continuation of our search for biologically active nitrogen and sulphur heterocyclics it was decided to synthesize these heterocyclic coumarins.

Results and Discussions

Realising the importance of 1,3-benzoxazines during investigations on internal Mannich reactions, we tried to develop a new route for the synthesis of the title compounds 3. The starting compound 3-(2-amino-4-thiazolyl)coumarins were prepared according to the procedure described in the literature. The starting compound 3-(2-amino-4-thiazolyl)coumarins (1) have been obtained by condensation of 3-(2-amino-4-thiazolyl)coumarin with aromatic aldehydes. These compounds (1) on reduction with sodium borohydride in methanol gave 3-(2-o-hydroxy benzylamino-4-thiazolyl)coumarins (2). Compounds 2 under went internal Mannich reaction when refluxed with formaldehydes (37%) in ethanol for 4-5 hours to give desired 3-(2-(1,3-benzoxazin-3-yl)-4-thiazolyl coumarins 3 in excellent yields (scheme-1). The structures of newly synthesized compounds have been confirmed by analytical (Table-1) and spectral data (IR, 'H NMR and Mass).
Facile synthesis of some new 3-(22-l,3-benzoxazin-3-yl)-4-thiazolyl coumarins

Scheme 1
TABLE 1: Analytical data of the compounds 1, 2 and 3

<table>
<thead>
<tr>
<th>Compound</th>
<th>R²</th>
<th>R¹</th>
<th>M. M. M. Redely and V. R. Rao Heterocyclic Communications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>H</td>
<td>H</td>
<td>ClCH₃ 76 6S 3.44</td>
</tr>
<tr>
<td>1b</td>
<td>H</td>
<td>Cl</td>
<td>CH₂Cl 74 80</td>
</tr>
<tr>
<td>1c</td>
<td>H</td>
<td>Cl</td>
<td>CH₂Cl 76 80</td>
</tr>
<tr>
<td>1d</td>
<td>H</td>
<td>Cl</td>
<td>CH₂Cl 77 70</td>
</tr>
<tr>
<td>1e</td>
<td>H</td>
<td>Cl</td>
<td>CH₂Cl 78 70</td>
</tr>
<tr>
<td>1f</td>
<td>H</td>
<td>Cl</td>
<td>CH₂Cl 79 70</td>
</tr>
<tr>
<td>1g</td>
<td>H</td>
<td>Cl</td>
<td>CH₂Cl 80 70</td>
</tr>
</tbody>
</table>

Note: The table contains various compounds with different substituents and yields. Each compound is represented by a formula and a yield value.
<table>
<thead>
<tr>
<th>Comp t*</th>
<th>R</th>
<th>R'</th>
<th>R''</th>
<th>m.p.</th>
<th>Recryst.</th>
<th>Yield</th>
<th>Molecular formula (mol wt.)</th>
<th>Calcd (Found) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2g</td>
<td>Br</td>
<td>Br</td>
<td>--</td>
<td>250 - 52</td>
<td>DMF + ClCH₂</td>
<td>79</td>
<td>C₁₃H₁₂N₂Br₂O₃S</td>
<td>44.86 (6.26)</td>
</tr>
<tr>
<td>2h</td>
<td>H</td>
<td>Cl</td>
<td>--</td>
<td>219 - 21</td>
<td>DMF + ClCH₂</td>
<td>70</td>
<td>C₉H₁₁ClN₂O₂S</td>
<td>59.25 (8.23)</td>
</tr>
<tr>
<td>3a</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>166 - 68</td>
<td>CH₃Cl₂ + MeOH</td>
<td>70</td>
<td>C₉H₁₃N₂O₂S</td>
<td>66.26 (8.80)</td>
</tr>
<tr>
<td>3b</td>
<td>H</td>
<td>H</td>
<td>Br</td>
<td>220 - 22</td>
<td>CH₃Cl₂ + MeOH</td>
<td>68</td>
<td>C₁₀H₁₂N₂Br₂O₃S</td>
<td>54.38 (7.23)</td>
</tr>
<tr>
<td>3c</td>
<td>H</td>
<td>H</td>
<td>Br</td>
<td>226 - 28</td>
<td>DMF + ClCH₂</td>
<td>65</td>
<td>C₁₀H₁₂N₂Br₂O₃S (441)</td>
<td>54.42 (7.25)</td>
</tr>
<tr>
<td>3d</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>224 - 26</td>
<td>ClCH₂Cl</td>
<td>64</td>
<td>C₂H₅CN₃O₂S</td>
<td>60.50 (8.00)</td>
</tr>
<tr>
<td>3e</td>
<td>H</td>
<td>F</td>
<td>5,6-Benzo</td>
<td>207 - 09</td>
<td>DMF + ClCH₂</td>
<td>62</td>
<td>C₈H₆N₂O₂S</td>
<td>69.88 (7.73)</td>
</tr>
<tr>
<td>3f</td>
<td>H</td>
<td>Br</td>
<td>--</td>
<td>228 - 30</td>
<td>DMF + ClCH₂</td>
<td>67</td>
<td>C₉H₁₂N₂Br₂O₃S (441)</td>
<td>54.42 (7.25)</td>
</tr>
<tr>
<td>3g</td>
<td>Br</td>
<td>Br</td>
<td>--</td>
<td>226 - 28</td>
<td>DMF + ClCH₂</td>
<td>60</td>
<td>C₁₀H₁₂N₂Br₂O₃S (520)</td>
<td>45.10 (6.12)</td>
</tr>
<tr>
<td>3h</td>
<td>H</td>
<td>Cl</td>
<td>--</td>
<td>160 - 62</td>
<td>DMF + ClCH₂</td>
<td>66</td>
<td>C₂₀H₁₁ClN₂O₂S</td>
<td>60.50 (8.00)</td>
</tr>
</tbody>
</table>
for NH group and the peak at 1723 is for lactone carbonyl. The IR spectra of all the final products do not exhibit bands in the region 3400-3450 and 3290-3299 indicating the lack of OH and -NH- functionalities. This also conforms the cyclisation of these groups with formaldehyde.

The 1H NMR spectra of all the compounds 2a-2h having hydroxy group at second position exhibits a singlet at δ 10 and a characteristic singlet is observed at δ 4.55-4.60 due to methylene hydrogens adjacent to -NH-. In the final products (3a-3h) there is a singlet at 4.81 due to methylene protons of -N-CH$_2$-O-. In the mass spectra of all the compounds 2a-2h and 3a-3h, molecular ion peaks are in accordance with their molecular weights.

Experimental

All melting points are uncorrected. IR spectra (v_{max} cm$^{-1}$) were recorded on Perkin-Elmer 282 instrument. The 1H NMR spectra were recorded on varian dpx 200 MHz spectrometer using TMS as internal standard and chemical shifts are expressed in δ ppm. Mass spectra were scanned on Jeol-JMS-300 spectrometer using 70 eV. The purity of the compounds were monitored by TLC.

3-(2-o-Hydroxybenzalimino-4-thiazolyl)coumarins (1):

A mixture of 0.001 mol of 3-(2-amino-4-thiazolyl)coumarin and appropriate o-hydroxy benzaldehyde (0.001 mol) was refluxed in ethanol containing catalytic amount of piperidine for 4 hours. The reaction mixture was cooled and the separated solid was filtered and crystallized from a appropriate solvent to yield title compounds.

3-(2-o-Hydroxybenzylamino-4-thiazolyl)coumarin (2)

Sodiumborohydride (0.085 mol) was added to a solution of compound 1 (0.002 mol) in methanol (15ml) and the mixture was stirred for 45 minutes at room temperature. The residue separated on pouring the solution into cold water was filtered, washed with water, dried and crystallised from suitable solvent to yield 70-80% of the title compound.

2a : m.p. 228-230°C, yield 80%, IR (v_{max} cm$^{-1}$); 1585 (-C=N-) and 1723 (OCO), 3299 (-NH-), 3400-3450 (OH), 1H NMR (DMSO-d$_6$) (δ ppm), 4.60 (s, 1H, -CH$_2$-), 6.75 - 7.75 (m, 10H, Ar-Η including 1H of thiazole and 1H, NH), 8.55 (s, 1H, C$_4$ of coumarin) and 10.0 (s, 1H (br), OH phenolic, D$_2$O exchangeable).

2h : 219-211°C, yield 70%, IR (v_{max} cm$^{-1}$); 1585 (-C=N-), 1723 (-O-CO-), 3299 (-NH-), 3400-3450 (-OH), 1H NMR (CDCl$_3$) (δ ppm), 4.55 (s, 2H, -CH$_2$-), 7.11-7.50 (m, 9H, ArH, including 1H of thiazole and 1H of -NH-), 8.45 (s, 1H, C$_4$ of coumarin and 10.0 (s, 1H, -H phenolic, D$_2$O exchangeable); Mass (m/z) 350 (M$^+$, 245 (100).

3-(2-(1,3-Benzoxazin-3-yl)-4-thiazolyl)coumarin (3):

Compound 2 (0.002 mol) and formalin (37%, 1 ml) were refluxed in ethanol (15 ml) for 5 hours. The residue obtained after pouring the reaction mixture into cold water was filtered, wash with water, dried and crystallised from appropriate solvent to give 3 in 60-70% yields.
Facile synthesis of some new 3-(2-(1,3-benzoxazin-3-yl))-4-thiazolyl coumarins

3a: m.p. 166-168°C, yield, 70%, IR (ν_max, cm⁻¹); 1586 (-C=N-), 731 (-O-OO), 1H NMR (DMSO-d_6) δ (ppm) 3.68 (s, 2H, -NCH₂), 4.90 (s, 2H, -N-CH₂-O), 6.8-7.7 (m, 8H, aromatic), 7.8 (s, 1H, C₅ of thiazole) and 8.50 (s, 1H, C₄ of coumarin); Mass (m/z) 362 (M⁺), 78 (100%).

8h: m.p. 160-162°C, yield 66%, IR (ν_max cm⁻¹), 1586 (-C=N-), 1731 (-O-CO-), 1H NMR (CDCl₃) (δ ppm), 3.48 (s, 2H, -N-CH₂-), 4.81 (s, 2H, -N-CH₂-O), 6.80-7.70 (m, 7H, aromatic), 7.85 (s, 1H, C₅ of thiazole) and 8.40 (s, 1H, C₄ of coumarin).

Acknowledgement:
The authors are thankful to RSIC, CDRI (Lucknow) for spectral data.

REFERENCES
1 O. Wawzonek, Heterocyclic Compounds, John Wiley and Sons, New York, 2, 173 (1975)
3 R. Livingstone, “Recent progress in carbon compounds”, 2nd ed, Elservier Amsterdam, 4, 96 (1977)
7 A.S. Hamamam and H.S. El-Kasher, Egyptian Pharmaceutical Congress, Carioro, 7-10, Dec 1975, abstracts p. 115
12 A. Hantzch and S. Leibig, Ann., 1, 249 (1888)
21 C.F. Koelsch, J. Am. Chem. Soc. 72, 2993 (1950)

Received on June 11, 2004.