MICROWAVE SYNTHESIS OF LANSOPRAZOLE DRUG INTERMEDIATE

B. Sailu, K.Ramakrishna, A.Komaraiah and P.S.N.Reddy*

Department of Chemistry, Osmania University, Hyderabad –500007, INDIA
Tel: +91-40- 27682337; e-mail: psreddyou@yahoo.com

Abstract: The sulfide intermediate, (2-[[3-Methyl-4-(2,2,2-trifluoroethoxy)-2-pyridinyl] methyl] thio]-1H-benzimidazole) (3), required for the industrial synthesis of the anti-ulcer drug Lansoprazole, has been prepared in excellent yields by microwave irradiation of a dry mixture of 2-chloromethyl-3-methyl-4-(2,2,2-trifluoroethoxy)pyridine hydrochloride (1) and 2-mercaptobenzimidazole (2) in the presence of Na2CO3.

Keywords: Microwave irradiation, Lansoprazole, 2-Mercaptobenzimidazole, 2-Chloromethyl -3-methyl-4-(2,2,2-trifluoroethoxy) pyridine hydrochloride.

Introduction
Lansoprazole (4) is a proton pump inhibitor and has successfully been used to heal and relieve symptoms of duodenal ulcers and gastro-esophageal reflex.1 Industrially, 4 has been synthesized by mCPBA oxidation2 of the sulfide intermediate 3 that was obtained from 2-mercaptobenzimidazole3 (2) and 2-chloromethyl-3-methyl-4-(2,2,2-trifluoroethoxy)pyridine hydrochloride4 (1). Reaction media such as heterogeneous catalysis, p-toluenesulfonyl chloride-K2CO3,5 p-toluenesulfonyl chloride-NaHC03,6 PBr3-Na2S2O3,7 PPh3,8 O(SO3Me)2-Et3N,9 borohydride exchange resin,9 NaOH-PCl10 and PhCONH2-Pd (PPh3)11 were used in the synthesis of 3. The procedures are tedious and pollutes the environment. Hence, the search for a simpler, high yielding and greener synthesis of 4 continues.

Results and discussions
We report here a new and efficient synthesis of the drug intermediate 3 and its derivatives. As a representative example, the synthesis of 3a is discussed. An equimolar mixture of 2-mercaptobenzimidazole (2a), 2-chloromethyl-3-methyl-4-(2,2,2-trifluoroethoxy) pyridine hydrochloride (1), and anhydrous sodium carbonate was exposed to microwave radiation in a 600 watt Microwave oven for 2 -10 minutes. The melt was chromatographed over silica gel (60-120 mesh) and eluted with benzene-ethylacetate solvent mixture. The sulfide intermediate 3 was isolated in 85 per cent yield and was characterized by comparing with an authentic sample1 and by converting it to lansoprazole 4 by a known procedure.1 The MW synthesis of 3 was extended to five other derivatives 2(b-f). In all cases, the corresponding sulfide intermediates 3(b-f) were isolated in 80–85 per cent yield (Table), and characterized by spectral data. This solvent-free reaction is an important example of green synthesis.
Experimental

General
Melting points in °C were determined on Polomon melting point apparatus (Model. No. M.P-96) and are uncorrected. IR Spectra were recorded on Shimadzu-435 spectrophotometer as KBr pellets, EI-MS on a VG Micromass 7070H (70 eV) instrument and H¹-NMR Spectra were taken in DMSO-d₆ on a Varian Gemini 200 MHz Spectrometer using TMS as internal standard. Microwave irradiation was carried out in BPL-Sanyo, BMO and 700T domestic microwave oven at an output of 600 watts

Experimental procedure
2-[[3-Methyl-4-(2, 2, 2-trifluoroethoxy)-2-pyridinyl] methyl] thio]-1H-benzimidazole 3. An equimolar solid mixture of 2-chloromethyl-3-methyl-4-(2,2,2-trifluoroethoxy) pyridine hydrochloride (1, 1 g), 2-mercaptobenzimidazole (2, 0.697 g), and anhydrous sodium carbonate (0.445 g) was irradiated with microwave irradiation in a 600 watt Microwave oven for 2-10 minutes in a Pyrex conical flask. After the reaction time, the melt was cooled to room temperature dissolved in methanol, adsorbed on silica gel (60-120 mesh) and chromatographed over silica gel (60-120 mesh). The column was eluted with benzene-ethyl acetate solvent mixture (7:3). The sulfide intermediate 3 was isolated from the eluant fractions in 85% yield (4.25 g) and characterized by spectral data.

Table: Reaction conditions and yields of the '2-[[3-Methyl-4-(2, 2, 2-trifluoroethoxy)-2-pyridinyl] methyl] thio]-1H-benzimidazole (3)
<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Time (min.)</th>
<th>Yield (%)</th>
<th>M.P. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>H</td>
<td>2</td>
<td>85</td>
<td>126-128</td>
</tr>
<tr>
<td>3b</td>
<td>Cl</td>
<td>2.5</td>
<td>80</td>
<td>190-192</td>
</tr>
<tr>
<td>3c</td>
<td>CH₃</td>
<td>3</td>
<td>75</td>
<td>156-158</td>
</tr>
<tr>
<td>3d</td>
<td>OCH₃</td>
<td>8</td>
<td>60</td>
<td>152-154</td>
</tr>
<tr>
<td>3e</td>
<td>OH</td>
<td>6</td>
<td>65</td>
<td>110-112</td>
</tr>
<tr>
<td>3f</td>
<td>NO₂</td>
<td>10</td>
<td>56</td>
<td>220-222</td>
</tr>
</tbody>
</table>

IR, PMR and Mass data of 3(a-f) & 4

3a: IR (KBr) 3553, 3053, 1893, 1577, 1444, 1409, 1284, 1254, 1162, 1109, 976, 857, 745, 664, 576; ^1^H NMR (200 MHz, CDCl₃): δ 8.40 (1H, d, J = 5.7 Hz), 7.53 (2H, dd, J = 6.0, 3.2 Hz), 7.18 (2H, dd, J = 6.0, 3.2 Hz), 6.72 (1H, d, J = 5.7 Hz), 4.41 (2H, q, J = 7.7 Hz), 4.40 (2H, s), 2.31 (3H, s); ESIMS: m/z 354 (M⁺) (100%).

3b: IR (KBr) 3050, 2951, 2870, 1654, 1582, 1452, 1415, 1332, 1271, 1162, 1115, 972, 918, 864, 791, 664, 577; ^1^H NMR (200 MHz, CDCl₃): δ 8.40 (1H, d, J = 5.7 Hz), 7.49 (2H, dd, J = 6.0, 3.2 Hz), 7.18 (1H, d, J = 6.0, 3.2 Hz), 6.72 (1H, d, J = 5.7 Hz), 4.7 (2H, s), 4.51 (2H, q, J = 7.7 Hz), 2.31 (3H, s); ESIMS: m/z 388 (M⁺) (100%).

3c: IR (KBr) 2942, 1654, 1585, 1478, 1454, 1272, 1169, 1111, 1037, 975, 839, 809, 756, 665, 579, 543; ^1^H NMR (200 MHz, CDCl₃): δ 8.40 (1H, d, J = 5.7 Hz), 7.49 (2H, dd, J = 6.0, 3.2 Hz), 7.0 (1H, d, J = 6.0, 3.2 Hz), 6.72 (1H, d, J = 5.7 Hz), 4.7 (2H, s), 4.5 (2H, q, J = 7.7 Hz), 3.85 (3H, s), 2.31 (3H, s); ESIMS: m/z 368 (M⁺) (100%).

3d: IR (KBr) 3154, 2951, 1624, 1582, 1495, 1425, 1341, 1284, 1255, 1156, 1112, 1030, 971, 833, 794, 665, 577; ^1^H NMR (200 MHz, CDCl₃): δ 8.40 (1H, d, J = 5.7 Hz), 7.49 (2H, dd, J = 6.0, 3.2 Hz), 7.0 (1H, d, J = 6.0, 3.2 Hz), 6.72 (1H, d, J = 5.7 Hz), 4.7 (2H, s), 4.5 (2H, q, J = 7.7 Hz), 2.31 (3H, s); ESIMS: m/z 384 (M⁺) (100%).

3e: IR (KBr) 2942, 1654, 1585, 1478, 1454, 1272, 1169, 1111, 1037, 975, 839, 809, 756, 665, 579, 543; ^1^H NMR (200 MHz, CDCl₃): δ 8.40 (1H, d, J = 5.7 Hz), 7.49 (2H, dd, J = 6.0, 3.2 Hz), 7.0 (1H, d, J = 6.0, 3.2 Hz), 6.72 (1H, d, J = 5.7 Hz), 5.35 (1H, br), 4.9 (2H, s), 4.5 (2H, q, J = 7.7 Hz), 3.85 (3H, s), 2.31 (3H, s); ESIMS: m/z 384 (M⁺) (100%).

3f: IR (KBr) 2530, 1628, 1578, 1537, 1414, 1343, 1254, 1179, 1112, 1063, 969, 890, 821, 731, 686, 662, 486; ^1^H NMR (200 MHz, CDCl₃): δ 8.40 (1H, d, J = 5.7 Hz), 7.49 (2H, dd, J = 6.0, 3.2 Hz), 7.0 (1H, d, J = 6.0, 3.2 Hz), 6.72 (1H, d, J = 5.7 Hz), 5.35 (1H, br), 4.9 (2H, s), 4.5 (2H, q, J = 7.7 Hz), 3.85 (3H, s), 2.31 (3H, s); ESIMS: m/z 399 (M⁺) (100%).

4: IR (KBr) 3225, 2929, 1901, 1657, 1580, 1455, 1401, 1283, 1172, 1038, 971, 857, 813, 749, 657, 527; ^1^H NMR (200 MHz, CDCl₃): δ 8.34 (1H, d, J = 5.6 Hz), 7.65 (2H, br), 7.35 (1H, d, J = 3.9 Hz), 7.30 (1H, d, J = 3.9 Hz), 6.67 (1H, d, J = 5.6 Hz), 4.74 (2H, q, J = 13.8 Hz), 4.40 (1H, d, J = 7.8 Hz), 4.32 (1H, d, J = 7.8 Hz), 2.21 (3H, s); ESIMS: m/z 370 (M⁺) (100%).

Conclusions

Microwave heating of 2-chloromethyl-3-methyl-4-(2, 2, 2-trifluoroethoxy) pyridine hydrochloride (1) and 2-mercaptopbenzimidazole (2) in the presence of Na₂CO₃ is a
Microwave synthesis of Lanosoprazole drug intermediate

simple, efficient, inexpensive and environmentally friendly synthesis of a valuable intermediate of Lansoprazole.

Acknowledgments

We thank the Director, IICT, and Hyderabad, India for providing NMR and Mass spectra.

References:

Received on 1st July 2006