Mykola Kut, Mikhajlo Onysko* and Vasyl Lendel

Heterocyclization of 5,6-disubstituted 3-alkenyl-2-thioxothieno[2,3-d]pyrimidin-4-one with p-alkoxyphenyltellurium trichloride

DOI 10.1515/hc-2016-0169
Received October 5, 2016; accepted October 31, 2016; previously published online November 28, 2016

Abstract: Electrophilic heterocyclization of 5,6-disubstituted 3-alkenyl-2-thioxothieno[2,3-d]pyrimidin-4-ones by treatment with p-alkoxyphenyltellurium trichlorides leads to annulation of the thiazoline moiety with the formation of 6,7-disubstituted-2-[dichloro(p-alkoxyphenyl)telluromethyl]-2,3-dihydro-5H-[1,3]thiazolo[3,2-а]thieno[2,3-d]pyrimidin-5-one hydrochlorides.

Keywords: 3-alkenyl-2-thioxothieno[2,3-d]pyrimidine-4-one; [1,3]thiazolo[3,2-а]thieno[2,3-d]pyrimidin-5-one; electrophilic cyclization; p-alkoxyphenyltellurium trichloride; regioselectivity.

Introduction

Organotellurium compounds show anti-cancer [1–3], anti-oxidant [3, 4] and anti-bacterial activity [5] and are used in neuropathy [6–11]. In this study we analyzed a new route of introduction of tellurium into a heterocyclic system. Electrophilic heterocyclization of unsaturated substrates under the action of tellurium tetrahalides is described for obtaining tellurium-containing fused heterocyclic systems [12–14]. Using for the same purpose aryltellurium trihalides is barely mentioned in the literature. Indeed, there are only few data about using aryltellurium trihalides in the reaction with unsaturated alcohols, phenols and acids [15–18]. We choose the N-alkenyl derivatives of 5,6-disubstituted-2-thioxothieno[2,3-d]pyrimidin-4-one as the objects for study electrophilic heterocyclization by p-alkoxyphenyltellurium trihalides.

Results and discussion

5,6-Disubstituted-2-thioxothieno[2,3-d]pyrimidin-4-ones 1–6 were synthesized as shown in Scheme 1 and used subsequently as substrates for electrophilic heterocyclization in the presence of p-alkoxyphenyltellurium trihalides (Scheme 2). The model compounds 1–6 contain a few nucleophilic centers in the molecule, which provides an opportunity to study regioselectivity of the electrophilic cyclization. Although several cyclization pathways could be suggested (not shown), the reaction takes a single route indicated in Scheme 2.

The heterocyclization was successfully conducted in acetic acid, chloroform and acetonitrile at different temperatures. It was found that under the optimal conditions the electrophilic heterocyclization is conducted in acetic acid at room temperature. The tellurium-containing compounds 7–15 were regioselectively obtained as the only products. It can be suggested that the addition of aryltellurium trichloride to a double bond of 1–6 takes place to generate the intermediate product A which is a direct precursor to the final product 7–15. In one case the hydrochloride 14 was transformed into a free base 16 (Scheme 2) by treatment with sodium sulfite. This is a remarkable result because the expected reduction of tellurium was not observed. All products 1–16 were fully characterized by spectral methods and elemental analysis.

Conclusion

Electrophilic heterocyclization of N-alkenyl-substituted 2-thioxothieno[2,3-d]pyrimidin-4-ones 1–6 in the presence of an aryltellurium trichloride was investigated. The reaction is highly regioselective.

Experimental

1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were recorded in DMSO-d_6 on a Varian Mercury-400 instrument. Melting points

*Corresponding author: Mikhajlo Onysko, Organic Synthesis Laboratory, Uzhhorod National University, Uzhhorod 88000, Ukraine, e-mail: muonysko@gmail.com

Mykola Kut and Vasyl Lendel: Organic Synthesis Laboratory, Uzhhorod National University, Uzhhorod 88000, Ukraine
Synthesis of 5,6-disubstituted 3-alkenyl-2-thioxothieno[2,3-d]pyrimidin-4-ones 1–6

A solution of an ethyl 2-aminothiophene-3-carboxylate (0.05 mol) and allyl or methallyl isothiocyanate [20] (0.05 mol) in ethanol (40 mL) was heated under reflux for 8 h and then treated with an aqueous solution (5 mL) of potassium hydroxide (0.1 mol). The mixture was heated for an additional 2 h, cooled and diluted with aqueous acetic acid (40 mL) was stirred at room temperature for 8 h. The resultant precipitate was filtered and crystallized from acetic acid.

5,6-Dimethyl-3-(prop-2-en-1-yl)-2-thioxo-2,3,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidin-4-one (6) Yield 85%; mp 209–210 °C; lit. mp 209–210 °C [21] and 209–212 °C [22].

5,6-Dimethyl-3-(2-methylprop-2-en-1-yl)-2-thioxo-2,3-dihydrothieno[2,3-d]pyrimidin-4(1H)-one (5) Yield 85%; mp 223–226 °C; lit. mp 223–226 °C [23].

3-(2-Methylprop-2-en-1-yl)-2-thioxo-2,3,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidin-4(1H)-one (4) Yield 85%; mp 202–204 °C; lit. mp 202–204 °C [24].

3-(2-Methylprop-2-en-1-yl)-2-thioxo-2,3,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidin-4(1H)-one (3) Yield 85%; mp 218–219 °C; lit. mp 218–219 °C.

Synthesis of 5,6-disubstituted 3-alkenyl-2-thioxothieno[2,3-d]pyrimidin-4-ones 1–6

were determined on a Stuart SMP30 instrument. Elemental analyses were performed on an Elementar Vario analyzer. All reagents were obtained from commercial suppliers and used without further purification. Anhydrous solvents were prepared according to the standard methods. The p-alkoxytellurium trihalides were synthesized according to the literature procedure [19].

3-(2-Methylprop-2-en-1-yl)-2-thioxo-2,3,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidin-4(1H)-one (4) Yield 85%; mp 223–226 °C; lit. mp 223–226 °C [23].


A mixture of 5,6-disubstituted 2-thioxothieno[2,3-d]pyrimidin-4-one 1–6 (1 mmol) and p-alkoxytellurium trichloride (1 mmol) in acetic acid (40 mL) was stirred at room temperature for 8 h. The resultant precipitate was filtered and crystallized from acetic acid.

Scheme 1 Synthesis of 5,6-disubstituted 2-thioxothieno[2,3-d]pyrimidin-4-ones 1–6.

Scheme 2 Synthesis of 6,7-disubstituted-2-(dichloro(p-alkoxyphenyl)telluromethyl)-2,3-dihydrothieno[2,3-d]pyrimidin-5-ones hydrochlorides.
2,3-dihydro-5H-[1,3]thiazolo[3,2-a]thieno[2,3-d]pyrimidin-5-one hydrochloride (7) Yield 73%; mp 201–202°C; 1H NMR: δ 8.05 (d, J = 8.9 Hz, 2H), 7.09 (d, J = 8.9 Hz, 2H), 4.69 (m, 1H), 4.60 (dd, J = 13.0 and 2.6 Hz, 1H), 4.38 (dd, J = 12.9 and 7.2 Hz, 1H), 4.04 (dd, J = 11.8 and 8.7 Hz, 1H), 3.91 (d, J = 13.0 and 2.6 Hz, 1H), 3.82 (s, 3H), 2.32 (s, 6H); 13C NMR: δ 162.2, 158.8, 157.1, 128.8, 128.7, 125.6, 119.7, 115.4, 56.0, 54.1, 49.9, 13.2. Anal. Calcd for C_{19}H_{21}Cl_{3}N_{2}O_{2}S_{2}Te: C, 37.4; H, 3.8; Cl, 17.4; N, 4.6. Found: C, 37.2; H, 3.69; Cl, 17.28; N, 4.49.

2,3,6,7-Tetramethyl-(dichloro(4-methoxyphenyl)tellurylmethyl)-2,3-dihydro-5H-[1,3]thiazolo[3,2-a]thieno[2,3-d]pyrimidin-5-one hydrochloride (8) Yield 73%; mp 206–207°C; 1H NMR: δ 8.05 (d, J = 8.9 Hz, 2H), 7.11 (d, J = 9.0 Hz, 2H), 4.85 (d, J = 12.9 Hz, 1H), 4.41 (d, J = 12.9 Hz, 1H), 4.31 (d, J = 11.9 Hz, 1H), 4.22 (d, J = 11.9 Hz, 1H), 3.81 (s, 3H), 2.34 (s, 6H), 1.91 (s, 3H); 13C NMR: δ 162.0, 161.1, 167.8, 157.1, 135.8, 129.0, 128.5, 125.6, 119.9, 115.4, 59.3, 57.8, 56.0, 54.6, 29.0, 13.2. Anal. Calcd for C_{19}H_{21}Cl_{3}N_{2}O_{2}S_{2}Te: C, 37.4; H, 3.80; Cl, 17.54; N, 4.60. Found: C, 37.2; H, 3.62; Cl, 17.36; N, 4.45.

2,3,6,7-Tetramethyl-(dichloro(4-ethoxyphenyl)tellurylmethyl)-2,3-dihydro-5H-[1,3]thiazolo[3,2-a]thieno[2,3-d]pyrimidin-5-one hydrochloride (9) Yield 73%; mp 217–218°C; 1H NMR: δ 8.03 (d, J = 8.8 Hz, 2H), 7.08 (d, J = 8.8 Hz, 2H), 4.68 (m, 1H), 4.60 (d, J = 12.8 Hz, 1H), 4.38 (dd, J = 12.8, 7.2 Hz, 2H), 4.09 (dd, J = 10.5 and 5.2 Hz, 2H), 4.02 (d, J = 8.6 Hz, 1H), 3.90 (dd, J = 11.8 and 5.9 Hz, 1H), 2.33 (s, 6H), 1.34 (t, J = 6.9 Hz, 3H); 13C NMR: δ 162.2, 161.2, 158.0, 157.2, 153.9, 128.8, 125.8, 125.3, 119.7, 115.8, 64.0, 54.1, 49.8, 15.0, 13.2. Anal. Calcd for C_{19}H_{21}Cl_{3}N_{2}O_{2}S_{2}Te: C, 37.4; H, 3.80; Cl, 17.45; N, 4.60. Found: C, 37.26; H, 3.62; Cl, 17.36; N, 4.45.

Synthesis of 2-methyl-(dichloro(4-ethoxyphenyl)tellurylmethyl)-2,3,6,7,8,9-hexahydro-5H-benzo[4,5]thieno[2,3-d][1,3]thiazolo[3,2-alpyrimidin-5-one (16) A solution of hydrochloride 13 (0.3 mmol) in DMSO (10 mL) was treated dropwise with a solution of sodium sulfite (1.2 mmol) in water (5 mL). The resultant white precipitate was filtered, washed with water and crystallized from acetic acid; yield 70%; mp 180–181°C; 1H NMR: δ 8.05 (d, J = 8.9 Hz, 2H), 7.11 (d, J = 8.9 Hz, 2H), 4.87 (d, J = 12.9 Hz, 1H), 4.42 (d, J = 12.9 Hz, 1H), 4.30 (d, J = 11.9, 1H), 4.22 (d, J = 11.9 Hz, 1H), 3.81(e, 3H), 2.88 (t, J = 6.9 Hz, 4H), 2.41–2.30 (m, 2H), 1.91 (s, 3H); 13C NMR: δ 167.3, 158.4, 156.5, 139.7, 136.8, 135.8, 125.6, 116.7, 115.4, 59.2, 57.8, 56.0, 54.7, 29.0, 28.8, 28.6, 27.9. Anal. Calcd for C_{19}H_{21}Cl_{3}N_{2}O_{2}S_{2}Te: C, 39.69; H, 3.96; Cl, 16.74; N, 4.41. Found: C, 39.48; H, 3.88; Cl, 16.64; N, 4.32.

References


