
Synthesis and antimicrobial evaluation of 3-(4-arylthieno[2,3-d]pyrimidin-2-yl)-2H-chromen-2-ones

https://doi.org/10.1515/hc-2018-0013

Received January 21, 2018; accepted May 4, 2018; previously published online June 23, 2018

Abstract: Syntheses of 3-(4-arylthieno[2,3-d]pyrimidin-2-yl)-2H-chromen-2-ones 5 by the reaction of 2-iminocoumarin-3-carboxamides 1 with (2-aminothiophen-3-yl)(aryl)methanones 2 and by the alternative Suzuki coupling of 4-chlorothieno[2,3-d]pyrimidin-2-yl-2H-chromen-2-one 7 with arylboronic acids were developed. Compound 5d showed higher antimicrobial activity against *Staphylococcus aureus* than the reference drug streptomycin.

Keywords: arylation; coumarin; coupling; rearrangement; thiophene.

Results and discussion

We studied the reaction of compounds 1 with compounds 2 as the way for synthesis of compounds 5 (Scheme 1). The previous studies showed the effectiveness of such a two-step procedure for the preparation of similar compounds [15–17]. Thus, heating a mixture of compounds 1a and 2a at 50–60°C in glacial acetic acid (method A) furnished the intermediate compound 3, albeit in a low yield and with insufficient purity. Analysis of the liquid chromatography/mass spectrometry (LC/MS) data of the crude mixture suggested that the major product 3 was contaminated with compounds 2a (Ar = Ph), 4 and 5a.

Attempts to rearrange compounds 3 to 5 by heating in dimethylformamide (DMF) failed. The use of glacial acetic acid (8 h of boiling) for the attempted rearrangement of 3 gave traces of compound 5a. However, heating of the crude product 3 in glacial acetic acid in the presence of ammonium acetate for 3 h furnished the desired product 5a in a yield of 18%. For the synthesis of compounds 5, heating of equimolar amounts of compounds 1 and 2 in glacial acetic acid (method B) was also tried. Products 5 were isolated in yields of 61–82% after quenching the mixture with cold water followed by crystallization of the resultant precipitate from ethanol. In the third experiment (method C), product 5e was obtained by a Suzuki coupling of compound 7 with 4-methoxyphenylboronic acid, which

*Corresponding author: Sergiy V. Vlasov, Organic Chemistry Department, National University of Pharmacy, 53, Pushkinska str., Kharkiv 61002, Ukraine, e-mail: sergiy.vlasov@gmail.com

Sergiy M. Kovalenko: Organic Chemistry Department, V. N. Karazin Kharkiv National University, 4, Svobody Sq., Kharkiv 61022, Ukraine

Pavlo E. Shynkarenko: Enamine Ltd., 78, Chervonotkatska str., Kiev 02094, Ukraine

Konstantin Yu. Krolenko: Medicinal Chemistry Department, National University of Pharmacy, 53, Pushkinska str., Kharkiv 61002, Ukraine

Vitaliy S. Vlasov: Pharmacoinformatics Department, National University of Pharmacy, 53, Pushkinska str., Kharkiv 61002, Ukraine

DE GRUYTER
had been prepared from the available intermediate 6 [15, 16] by treatment with POCl₃ (method C). The Suzuki reaction proceeded slowly and required 12 h for completion. The target compound 5e was isolated in a 45% yield after chromatographic purification. In comparison, method B is the most convenient way of obtaining 3-(4-arylthieno[2,3-d]pyrimidin-2-yl)-2H-chromen-2-ones 5.

The antimicrobial activity of compounds 5 at a concentration of 100 μg/mL in dimethyl sulfoxide (DMSO) solution against the Staphylococcus aureus (ATCC 25923) strain was investigated using the agar well diffusion assay [18, 19]. It was found that compounds 5a–c, e show antimicrobial activity that is comparable to the activity of the reference drug streptomycin under similar conditions. However, compound 5d displays activity against the strain S. aureus that exceeds the activity of streptomycin at a concentration of 100 μg/mL.

Conclusions

New approaches to the synthesis of 3-(4-arylthieno[2,3-d]pyrimidin-2-yl)-2H-chromen-2-ones 5 were studied. It was found that ‘recyclization’ of 2-iminocoumarin-3-carboxamides in reaction with (2-amino-4,5,6,7-tetrahydro-1-benzothiophen-3-yl)(aryl)methanones (method B) is the most expedient synthetic route. Products 5 show antimicrobial activity against S. aureus (ATCC 25923). Compound 5d exhibits higher antimicrobial activity than the reference drug streptomycin.

Experimental

2-Iminocoumarin-3-carboxamides 1a–e, (2-amino-4,5,6,7-tetrahydro-1-benzothiophen-3-yl)(aryl)methanones 2a,b and
2-(8-methoxy-2-oxo-2H-chromen-3-yl)-5,6,7,8-tetrahydro[1]benzothieno[2,3-d]pyrimidin-4(3H)-one 6 were prepared according to the previously reported methods [15, 20, 21]. The antimicrobial activity of compounds 5 was tested using the agar well diffusion method [18, 19].

3-(4-Chloro-5,6,7,8-tetrahydro[1]benzothieno[2,3-d]pyrimidin-2-yl)-8-methoxy-2H-chromen-2-one (7)

To 2.0 g (5.2 mmol) of 2-(8-methoxy-2-oxo-2H-chromen-3-yl)-5,6,7,8-tetrahydro[1]benzothieno[2,3-d]pyrimidin-4(3H)-one 6 was added 10.0 mL of phosphorus oxychloride, and the mixture was stirred under reflux for 5 h. The excess of POCl3 was distilled off and the residue was treated with ice-cold water. The resultant precipitate was filtered off, washed with ethanol and then with hexanes.

Compound 7 was obtained in a 79% yield as a yellow powder; mp 123–124°C; 1H NMR (400 MHz, CDCl3): 1.91 (m, 4H, CH2CH2); 2.88 (m, 2H, CH2); 3.09 (m, 2H, CH2); 3.96 (s, 3H, OCH3); 7.09–7.24 (m, 3H, Ar-H); 8.58 (s, 1H, CH); 13C NMR (100 MHz, CDCl3): δ 22.2, 22.4, 26.1, 26.2, 56.3, 114.6, 119.5, 120.2, 124.4, 124.6, 127.1, 127.3, 140.7, 144.2, 165.4, 167.0, 153.0, 155.0, 157.7, 169.2; IR (KBr): v 2938, 2840, 1743, 1678, 1608, 1558, 1560, 1479, 1638, 1418, 1349, 1301 cm⁻¹; LC-MS: m/z 399 [M + H]⁺. Anal. Calcld for C29H28ClN4O3S: C, 52.02; H, 3.79; N, 7.02. Found: C, 52.03; H, 3.88; N, 7.21.

6-Chloro-3-(4-phenyl-5,6,7,8-tetrahydro[1]benzothieno[2,3-d]pyrimidin-2-yl)-2H-chromen-2-one (5b)

This compound was obtained in a 68% yield (method B) as a yellow powder; mp 203–204°C; 1H NMR (200 MHz, DMSO-d6): δ 1.58 (m, 2H, CH2); 1.80 (m, 2H, CH2); 2.09 (m, 2H, CH2); 2.89 (m, 2H, CH2); 3.49–3.70 (m, 7H, Ar-H); 7.80 (d, 1H, J = 2.1 Hz, Ar-H); 8.69 (s, 1H, CH); 13C NMR (125 MHz, DMSO-d6): δ 22.3, 22.5, 26.0, 27.0, 118.3, 120.5, 125.6, 127.1, 127.5, 128.3, 128.7, 128.8, 129.6, 129.8, 130.7, 133.3, 138.5, 139.5, 145.2, 150.2, 151.1, 158.1, 160.9, 168.8; IR (KBr): v 3050, 2940, 2860, 2837, 1738, 1606, 1588, 1526, 1508, 1492, 1458, 1434, 1408, 1360, 1348, 1306 cm⁻¹; LC-MS: m/z 411 [M + H]⁺. Anal. Calcld for C29H20ClN4O3S: C, 73.15; H, 4.42; N, 6.82. Found: C, 73.26; H, 4.58; N, 6.90.

6-Bromo-3-(4-(4-methoxyphenyl)-5,6,7,8-tetrahydro[1]benzothieno[2,3-d]pyrimidin-2-yl)-2H-chromen-2-one (5c)

This compound was obtained in a 61% yield (method B) as a yellow powder; mp 253–254°C; 1H NMR (200 MHz, DMSO-d6): δ 1.63 (m, 2H, CH2); 1.84 (m, 2H, CH2); 2.22 (m, 2H, CH2); 2.91 (m, 2H, CH2); 3.86 (s, 3H, OCH3); 7.06 (d, 2H, J = 8.8 Hz, H3', H5'); 7.40 (d, 1H, J = 8.8 Hz, H8); 7.55 (d, 2H, J = 8.8 Hz, H2', H6'); 7.77 (dd, 1H, J = 8.8 Hz, J = 2.4 Hz, H7); 8.15 (d, 1H, J = 2.4 Hz, H5); 8.67 (s, 1H); 13C NMR (125 MHz, DMSO-d6): δ 22.4, 22.5, 26.1, 27.3, 55.7, 113.7, 116.6, 118.6, 121.1, 126.0, 127.1, 127.7, 130.8, 131.4, 131.7, 135.4, 143.8, 153.2, 154.7, 1575, 160.5, 160.7, 168.8; IR (KBr): v 3072, 2936, 2837, 1743, 1608, 1577, 1494, 1427, 1396, 1360, 1331, 1298 cm⁻¹; LC-MS: m/z 521 [M + H]⁺. Anal. Calcld for C51H40BrN4O3S: C, 60.12; H, 3.69; N, 5.39. Found: C, 60.17; H, 3.88; N, 5.34.

7-Methoxy-3-(4-(4-methoxyphenyl)-5,6,7,8-tetrahydro[1]benzothieno[2,3-d]pyrimidin-2-yl)-2H-chromen-2-one (5d)

This compound was obtained in a 82% yield (method B) as a yellow powder; mp 199–200°C; 1H NMR (200 MHz, DMSO-d6): δ 1.62 (m, 2H, CH2); 1.80 (m, 2H, CH2); 2.10 (m, 2H, CH2); 2.90 (m, 2H, CH2); 3.83 (s, 3H, OCH3); 3.87 (s, 3H, OCH3); 6.98 (dd, 1H, J = 8.8 Hz, J = 2.4 Hz, H6); 7.06–7.10 (m, 3H, H3', H5', H8); 7.56 (d, 2H, J = 8.8 Hz, H2', H6'); 7.81 (d, 1H, J = 8.8 Hz, H5); 8.70 (s, 1H); 13C NMR (75 MHz, DMSO-d6): δ 22.2, 22.5, 26.0, 27.3, 55.7, 56.5, 100.2, 112.8, 113.3, 121.7, 126.8, 127.7, 131.0, 133.1, 134.4, 155.4, 156.3, 158.3, 160.6, 160.7, 163.8, 168.8; IR (KBr): v 3066, 2933, 2902, 2800, 2838, 1746, 1607, 1578, 1561, 1506, 1496, 1462, 1439, 1406, 1385, 1352, 1303 cm⁻¹; LC-MS: m/z 471 [M + H]⁺. Anal. Calcld for C42H40N4O3S: C, 68.92; H, 4.71; N, 5.95. Found: C, 68.95; H, 4.89; N, 5.97.

8-Methoxy-3-(4-(4-methoxyphenyl)-5,6,7,8-tetrahydro[1]benzothieno[2,3-d]pyrimidin-2-yl)-2H-chromen-2-one (5e)

Method C A mixture of compound 7 (1.0 g, 2.51 mmol), 4-methoxyphenylboronic acid (0.42 g, 2.76 mmol), potassium carbonate
(1.56 g, 11.28 mmol) and Pd(dpff)Cl₂ (0.041 g, 0.05 mmol) in a mixed solvent of 1,4-dioxiane/H₂O (40 mL, 6:1) was stirred at 90°C for 12 h. The reaction progress was monitored by thin-layer chromatography (TLC) eluting with ethyl acetate/hexanes, 1:1, and using ultraviolet (UV) detection at 365 nm. The mixture was quenched with water and extracted with chloroform (3 × 50 mL). The combined extracts were dried over Na₂SO₄ and concentrated under reduced pressure, and the residue was subjected to silica gel chromatography eluting with CHCl₃/MeOH (95:5–90:10). Compound 5e was obtained in a 76% yield (method B) and a 45% yield (method C) as a yellow powder; mp 236–237°C (method B); mp 237–238°C (method C); 1H NMR (400 MHz, CDCl₃): δ: 1.64 (m, 2H, CH₂); 1.87 (m, 2H, CH₂); 2.22 (m, 2H, CH₂); 2.88 (m, 2H, CH₂); 3.86 (s, 3H, OCH₃); 3.94 (s, 3H, OCH₃); 6.99 (d, J = 8.1 Hz, H-2′); 7.05–7.19 (m, 3H, Ar-H); 7.25 (d, 2H, J = 8.8 Hz, H-2, H-6′); 7.80 (s, 1H); 13C NMR (100 MHz, CDCl₃): δ: 22.5, 22.6, 26.2, 27.3, 55.4, 56.3, 113.4, 114.2, 119.8, 120.1, 124.1, 126.2, 127.4, 130.8, 131.1, 139.3, 144.0, 144.5, 146.9, 154.8, 158.4, 160.4, 160.6, 169.4; IR (KBr): 2924, 2926, 2838, 1762, 1576, 1557, 1514, 1479, 1436, 1604, 1387, 1314, 1303 cm⁻¹, LC-MS: m/z 247 [M+H]+. Anal. Calcd for C₉H₈NO₅S: C, 68.92; H, 4.71; N, 5.95. Found: C, 68.99; H, 4.86; N, 6.07.

Acknowledgments: The authors gratefully acknowledge the Head of Microorganism Biochemistry and Biotechnology Laboratory of the NAMS Institute of Microbiology and Immunology of Ukraine and Dr. Tatjana P. Osoledchenko for conducting the microbiological experiment.

References