Preference-Based Instrumental Variable Methods for the Estimation of Treatment Effects: Assessing Validity and Interpreting Results

M. Alan Brookhart, Division of Pharmacoepidemiology, Brigham and Women's Hospital & Harvard Medical School
Sebastian Schneeweiss, Division of Pharmacoepidemiology, Brigham and Women's Hospital & Harvard Medical School

Recommended Citation:
DOI: 10.2202/1557-4679.1072
Preference-Based Instrumental Variable Methods for the Estimation of Treatment Effects: Assessing Validity and Interpreting Results

M. Alan Brookhart and Sebastian Schneeweiss

Abstract

Observational studies of prescription medications and other medical interventions based on administrative data are increasingly used to inform regulatory and clinical decision making. The validity of such studies is often questioned, however, because the available data may not contain measurements of important prognostic variables that guide treatment decisions. Recently, approaches to this problem have been proposed that use instrumental variables (IV) defined at the level of an individual health care provider or aggregation of providers. Implicitly, these approaches attempt to estimate causal effects by using differences in medical practice patterns as a quasi-experiment. Although preference-based IV methods may usefully complement standard statistical approaches, they make assumptions that are unfamiliar to most biomedical researchers and therefore the validity of such an analysis can be hard to evaluate. Here, we describe a simple framework based on a single unobserved dichotomous variable that can be used to explore how violations of IV assumptions and treatment effect heterogeneity may bias the standard IV estimator with respect to the average treatment effect in the population. This framework suggests various ways to anticipate the likely direction of bias using both empirical data and commonly available subject matter knowledge, such as whether medications or medical procedures tend to be overused, underused, or often misused. This approach is described in the context of a study comparing the gastrointestinal bleeding risk attributable to different non-steroidal anti-inflammatory drugs.

KEYWORDS: outcomes research, pharmacoepidemiology, instrumental variables methods

Author Notes: This project was funded under Contract No. 290-2005-0016-I-TO3-WA1 from the Agency for Healthcare Research and Quality (AHRQ), US Department of Health and Human Services (DHHS) as part of the Developing Evidence to Inform Decisions about Effectiveness (DEcIDE) program. The authors of this report are responsible for its content. Statements in the report should not be construed as endorsed by AHRQ or DHHS. Dr. Brookhart was additionally supported by a career development award from the National Institute on Aging (AG027400). The authors acknowledge helpful comments from anonymous referees.
1 Introduction

Observational studies of prescription medications and other medical interventions based on administrative data are increasingly used to inform regulatory and clinical decision making. The validity of such studies is often questioned, however, because the available data may not contain measurements of important prognostic variables that guide treatment decisions. Variables that are typically unavailable in administrative databases include lab values (e.g., serum cholesterol levels), clinical data (e.g., weight, blood pressure), aspects of lifestyle (e.g., smoking status, eating habits), and measures of cognitive and physical functioning. The threat of unmeasured confounding is thought to be particularly high in studies of intended effects because of the strong correlation between treatment choice and disease risk (Walker, 1996).

The method of instrumental variables (IV) provides one potential approach to the problem of residual confounding. Instrumental variables often arise in the context of a natural or quasi-experiment and permit the bounding and estimation of causal effects even when important confounding variables are unrecorded. Informally, an IV is a variable that is predictive of the treatment under study but unrelated to the study outcome other than through its effect on treatment. An IV can be thought of as a factor that induces random variation in the treatment under study. Despite their potential to address a fundamental and pervasive problem in observational studies of treatment effects, applications of IV methods in medical research are rare, presumably because plausible IVs have been difficult to find.

In recent work, IVs defined at the level of the geographic region (Wen and Kramer, 1999; Brooks et al., 2003; Stuckel et al., 2007), hospital or clinic (Johnston, 2000; Brookhart, 2007), and individual physician (Korn and Baumrind, 1998; Brookhart et al., 2006; Wang et al., 2005) have been proposed or applied in medical outcomes research. Implicitly, these studies have attempted to estimate causal effects by assuming that a) providers (or groups of providers) differ in their use of the treatment under study; b) patients select or are assigned to providers independently of the provider’s use of the treatment, and c) a provider’s use of the treatment is unrelated to their use of other medical interventions that might influence the outcome. We call such IVs “preference-based instruments” since they are derived from the assumption that different providers or groups of providers have different preferences dictating how medications or medical procedures are used. Although preference-based IV

1See Angrist et al., 1996; Greenland, 2000; Martens et al. 2006, and Hernán and Robins, 2006 for overviews of IV methods.
approaches may reduce confounding in certain circumstances, they depend on strong assumptions that are unfamiliar to most clinical researchers and are therefore hard to evaluate. Furthermore, the treatment effects identified by such instruments can be difficult to interpret.

We attempt to illuminate these important practical issues by describing a theoretical framework that can be used to explore the sensitivity of the standard IV estimator to violations of IV assumptions and treatment effect heterogeneity. This framework assumes the existence of a single unmeasured dichotomous variable that can be both a confounder and a source of treatment effect heterogeneity. We consider how empirical data and subject matter knowledge can be used within this framework to anticipate the direction and magnitude of bias in the standard IV estimator relative to the average effect of treatment in the population. We also consider how general knowledge about medical practice, such as whether medications tend to be overused, underused, or potentially misused, can help interpret the target of estimation (i.e., the IV estimand).

2 Motivating example

The methods proposed in this paper are described in the context of an evaluation of a previously published study that we conducted on the gastrointestinal (GI) safety of non-steroidal anti-inflammatory drugs (NSAIDs) (Brookhart et al, 2006). Our study attempted to assess the risk of GI toxicity among new users of non-selective NSAIDs compared with new users of the COX-2 selective NSAIDs (coxibs). Our motivating example illustrates both the use of a preference-based IV and the difficulty of estimating intended treatment effects using administrative data.

As background, coxibs are generally thought to have greater GI tolerability than non-selective NSAIDs. Confounding is likely to arise in comparative studies of NSAIDs as a result of the selective prescribing of coxibs to patients who are at elevated risk of GI complications, such as patients with a history of smoking, alcoholism, obesity, or peptic ulcer disease. Because many GI risk factors are poorly measured or completely unrecorded in typical pharmacoepidemiologic databases, studies comparing the GI risks of different NSAIDs would be expected to underestimate any protective effect of coxibs. Indeed, several observational studies have been unable to attribute any GI-protective effect to the coxibs (Laporte et al, 2003).

Although a physician’s choice of NSAID relies strongly on an assessment of a patient’s underlying GI risk, NSAID prescribing is also thought to depend on
individual physician preference (Solomon et al, 2003; Schneeweiss et al, 2005). The possibility that physicians strongly differ in their preference for different NSAIDs suggests that an IV defined at the level of the prescribing physician could be used to compare NSAID treatment effects.

2.1 Study population and data

Our study was based on 37,842 new NSAID users drawn from a large population-based cohort of Medicare beneficiaries who were eligible for a state-run pharmaceutical benefit plan. State medical license numbers from the pharmacy claims were used to identify the prescribing physician (Brookhart et al, 2007). From the Medicare and pharmacy claims we extracted a treatment assignment \(X\) (\(X=1\) if a patient was placed on a coxib, \(X=0\) otherwise), a set of measured covariates \(C\), and an outcome \(Y\) indicating a hospitalization for GI bleed or peptic ulcer disease within 60 days of initiating an NSAID.

One approach to defining a physician-level IV would be to use individual physician indicator variables as IVs. This approach would essentially use the proportion of coxibs prescriptions written during the study period as a measure of a physician’s preference for prescribing coxibs. Such an approach was implicitly used in studies that have used hospitals (Johnston, 2000) and geographic regions (Brooks et al, 2003) as IVs. In our study of NSAIDs, however, the study period was an era of aggressive marketing and active debate about the safety and effectiveness of coxibs and non-selective NSAIDs. Therefore, we sought an IV that would allow preference to change. We opted to use the type of the most recent NSAID prescription initiated by each physician as an instrument, i.e., we defined the IV \(Z\) to be equal to 1 if the physician’s most recent new NSAID prescription was for a coxib and zero otherwise. A few physicians had multiple NSAID prescriptions occurring on the same day. These were randomly ordered in time since prescriptions claims do not contain a time stamp.

We justified the use of this variable by assuming that \(Z\) was effectively randomly assigned to patients, so that patient characteristics were unrelated to \(Z\), and also that \(Z\) was related to \(Y\) only through its relationship with \(X\), the choice of NSAID type. We also assumed that physicians varied in their preference for using coxibs, so that \(Z\) predicted \(X\). In the following section we formalize these assumptions.
3 The method of instrumental variables

We describe our IV approach using the potential (counterfactual) outcome framework of Rubin (1974). This approach requires that for each subject there exist two counterfactual (potential) outcomes, Y_1 and Y_0, that correspond to the outcomes we would observe if a patient were treated with coxibs or non-selective NSAIDs, respectively. For these outcomes we assume the following model (called a structural model):

$$Y_x = \alpha_0 + \alpha_1 x + \epsilon_x$$ \hspace{1cm} (1)

where x is an assigned rather than an observed treatment, ($x = 1$ if the assigned treatment is a coxib, $x = 0$ otherwise), ϵ_x is an error specific to the assigned treatment, and $E[\epsilon_x] = 0$ for $x \in \{0, 1\}$. The average treatment effect in the population is expressed as $E[Y_1 - Y_0] = \alpha_1$.

Under the consistency assumption, which states that the observed outcome is indeed a counterfactual outcome, the observed data are linked to the potential outcome through the relation

$$Y = X(Y_1) + (1 - X)(Y_0).$$ \hspace{1cm} (2)

Substituting the terms from the structural model (1) into the relation (2) allows us to write the observed outcome as a function of the observed treatment and structural model parameters and error terms:

$$Y = \alpha_0 + \alpha_1 X + \epsilon_0 + X(\epsilon_1 - \epsilon_0).$$ \hspace{1cm} (3)

The term $\alpha_0 + \epsilon_0$ reflects an individual patient’s outcome if treatment were withheld, but everything else were to remain the same about the patient and concomitant treatments. The term $\epsilon_1 - \epsilon_0$ represents the added benefit or harm beyond α_1 that an individual patient receives from treatment. This term captures a patient’s unique response to treatment and allows for treatment effect heterogeneity.

In our setting, the term ϵ_0 represents both patient characteristics that are related to baseline prognosis as well as other concomitant treatments that a patient might receive from the physician that could affect the outcome. If Z has an independent relation with Y, either through its association with patient characteristics or concomitant treatments, then $E[\epsilon_0 | Z] \neq 0$. For the remainder of the paper, we equate the assumption $E[\epsilon_0 | Z] = 0$ with the exclusion restriction of Angrist et al (1996). IV approaches also require that the instrument is associated with treatment, so that $E[X | Z = 1] - E[X | Z = 0] \neq 0$.

DOI: 10.2202/1557-4679.1072
We term these two assumptions, “the IV assumptions.”

Traditional IV approaches in econometrics assume that treatment effects are constant, so $\epsilon_1 = \epsilon_0$ for all patients. When this and the IV assumptions hold,

$$\frac{E[Y|Z = 1] - E[Y|Z = 0]}{E[X|Z = 1] - E[X|Z = 0]} = \frac{E[\alpha_0 + \alpha_1 X + \epsilon_0|Z = 1] - E[\alpha_0 + \alpha_1 X + \epsilon_0|Z = 0]}{E[X|Z = 1] - E[X|Z = 0]} = \alpha_1.$$

Thus, the parameter α_1 can be estimated by replacing the conditional expectations with estimates from the sample:

$$\hat{\alpha}_{IV} = \frac{\hat{E}[Y|Z = 1] - \hat{E}[Y|Z = 0]}{\hat{E}[X|Z = 1] - \hat{E}[X|Z = 0]}.$$ \hspace{1cm} (4)

This is the standard IV estimator or Wald estimator. For this to be a consistent estimator of α_1, we need to assume that one patient’s counterfactual outcomes are not affected by the treatment assignment of other patients. This along with the consistency assumption compose the so-called stable unit value treatment assumption (SUTVA) of Rubin (1986).

When treatment effects are heterogeneous an additional assumption is required to meaningfully interpret the standard IV estimator. Imbens and Angrist (1994) and Angrist et al (1996) established that if the IV deterministically affects treatment in one direction (an assumption termed monotonicity), the standard IV estimator is consistent for the average effect of treatment among the sub-population of patients termed the “compliers” (Angrist et al, 1996) or “marginal patients” (Harris and Remler, 1998). These are patients whose treatment status is affected by the IV. In a placebo-controlled RCT with non-compliance, the marginal patients are those who would always take their assigned treatment. Monotonicity requires that there are no patients in the RCT who would do the opposite of what they were assigned.

In the setting of preference-based IVs, the concept of a marginal patient is less clear. For example, a certain type of patient may be treated 95% of the time by physicians with $Z = 1$ and 5% of the time by physicians with $Z = 0$, whereas another patient-type may be treated 52% of the time by physicians with $Z = 1$ and 48% of the time by physicians with $Z = 0$. Both patients are technically “marginal,” as their treatment status is affected by the instrument; however, patients of the second type are less likely to have their treatment status depend on the physician that they see and therefore appear less “marginal.” See Hernán and Robins (2006) for a discussion of a
deterministic monotonicity assumption for preference-based instruments. See Korn and Baumrind (1998) for an assessment of monotonicity in a study that elicited explicit clinician preference.

Alternatively, one can assume that the correlation between the received treatment and an individual’s response to it (as measured on a linear scale) is the same across levels of \(Z \), i.e., \(E[X(\epsilon_1 - \epsilon_0)|Z] = E[X(\epsilon_1 - \epsilon_0)] \). If this and the IV assumptions hold, then the standard IV estimator will be consistent for the average treatment effect in the population. See Wooldridge (1997), Heckman et al (2006), and Hernán and Robins (2006) for detailed discussions of instrumental variable estimation in the presence of treatment effect heterogeneity.

Our focus is on understanding how violations of the exclusion restriction and treatment effect heterogeneity may bias the traditional IV estimator relative to average effect of treatment in the population.

3.1 A structural model for sensitivity analysis

To explore the sensitivity of the standard IV estimator to violations of the exclusion restriction and treatment effect heterogeneity, we extend the structural model (1) by introducing a single dichotomous variable \(U \) that is assumed to be unobserved. This variable could represent a pre-treatment risk factor for the outcome, a concomitant treatment assigned by the physician, or treatment effect modifier on the risk difference scale. Our new model for the counterfactual \(Y_x \) is given by

\[
Y_x = \alpha_0 + \alpha_1 x + \alpha_2 U + \alpha_3 U x + \epsilon_x,
\]

with \(E[\epsilon_x|U] = 0 \) for \(x \in \{0, 1\} \). The average treatment effect for those with \(U = 0 \) is given by \(E[Y_1 - Y_0|U = 0] = \alpha_1 \) and the average effect of treatment among those with \(U = 1 \) is \(E[Y_1 - Y_0|U = 1] = \alpha_1 + \alpha_3 \). The average treatment effect in the population is given by \(E[Y_1 - Y_0] = \alpha_1 + \alpha_3 E[U] \).

Under the consistency assumption, we can re-write the observed \(Y \) as a function of the structural parameters and error terms

\[
Y = \alpha_0 + \alpha_1 X + \alpha_2 U + \alpha_3 XU + \epsilon_0 + X(\epsilon_1 - \epsilon_0).
\]

We assume that \(E[\epsilon_x|X, U] = 0 \) for \(x \in \{0, 1\} \), so that the parameters of (5) could be consistently estimated by least-squares if both \(X \) and \(U \) were observed. Given this assumption, we can see that by iterated expectations...
\[E[\epsilon_0 + X(\epsilon_1 - \epsilon_0)|X] = 0. \] Therefore,
\[E[Y|X = 1] - E[Y|X = 0] = \alpha_1 + \alpha_2(E[U|X = 1] - E[U|X = 0]) + \alpha_3 E[U|X = 1]. \]

This expression tells us that a crude estimate of the treatment effect based on a difference in means between treatment groups (e.g., a risk difference for a dichotomous outcome) is inconsistent for the average treatment effect in the population if \(U \) is not mean independent of \(X \).

To evaluate the IV estimand, we further assume that \(E[\epsilon_0|Z] = 0 \), so that the instrument can be related to the observed outcome only through its effect on \(X \) or association with \(U \); and also that \(E[X(\epsilon_1 - \epsilon_0)|Z] = E[X(\epsilon_1 - \epsilon_0)] \) so that there is no relevant treatment effect heterogeneity beyond that generated by \(U \). Under these assumptions, the standard IV estimand can be written as
\[
\frac{E[Y|Z = 1] - E[Y|Z = 0]}{E[X|Z = 1] - E[X|Z = 0]} = \alpha_1 + \gamma_1 + \gamma_2
\]
where
\[
\gamma_1 = \alpha_2 \frac{E[U|Z = 1] - E[U|Z = 0]}{E[X|Z = 1] - E[X|Z = 0]}
\]
and
\[
\gamma_2 = \alpha_3 \frac{E[XU|Z = 1] - E[XU|Z = 0]}{E[X|Z = 1] - E[X|Z = 0]}
\]
\[
= \alpha_3 \frac{E[X|Z = 1, U = 1]E[U|Z = 1] - E[X|Z = 0, U = 1]E[U|Z = 0]}{E[X|Z = 1] - E[X|Z = 0]}
\]

So the asymptotic bias in IV estimator relative to the average effect of treatment in the population is given by
\[
BIAS(\hat{\alpha}_{IV}) = (\alpha_1 + \gamma_1 + \gamma_2) - (\alpha_1 + \alpha_3 E[U])
\]
\[
= \alpha_2 \frac{E[U|Z = 1] - E[U|Z = 0]}{E[X|Z = 1] - E[X|Z = 0]}
\]
\[
+ \alpha_3 \left\{ \frac{E[X|Z = 1, U = 1]E[U|Z = 1] - E[X|Z = 0, U = 1]E[U|Z = 0]}{E[X|Z = 1] - E[X|Z = 0]} - E[U] \right\}
\]

By considering the above expressions, we can understand how violations of the exclusion restriction and treatment effect heterogeneity caused by a single binary covariate can bias the IV estimand relative to the average effect of treatment in the population. In the following sections, we illustrate these ideas in the context of our study of NSAIDs.
In table 1, we give the distribution of patient-level GI risk factors and concomitant GI-related treatments across levels of the received treatment. The third column gives the prevalence difference between levels of the exposure and 95% confidence limits (reported in percentage points). This table reveals that patients prescribed coxibs were older, more likely to be female, and more likely to have a history of GI hemorrhage and peptic ulcer disease. These patients were also more likely to have recently used warfarin and glucocorticoids, medications that increase the risk of GI hemorrhage. Coxib users were also more likely to have recently used GI-protective drugs, suggestive of unmeasured GI problems. This table is consistent with our expectation that coxib users should be at greater baseline risk of GI complications.

In table 2, we give the distribution of patient-level GI risk factors across levels of the instrument. This table parallels table 1, except that levels of the instrument rather than the received treatment define the columns. We find that the imbalance of GI risk factors and concomitant/recent treatments has been greatly reduced; however, there is some evidence of weak associations between Z and several GI risk factors. This could be due to specialist physicians seeing sicker patients and being more likely to prescribe coxibs. It is also possible that patients who are at greater GI risk may seek out physicians who are more likely to prescribe coxibs.

The IV approach requires that the instrument be related to the exposure. In our study, we found that $\hat{E}[X|Z = 1] - \hat{E}[X|Z = 0] = 22.8\%$. Therefore, within our population, seeing a physician who most recently prescribed a coxib was associated with an absolute increase of 22.8% in a patient’s probability of receiving a coxib. The instrument was also related to the outcome. Seeing a physician whose previous new NSAID prescription was a coxib decreased a patient’s probability of a 60-day GI complication by 0.21%.

Using these statistics, we can evaluate the standard IV estimator:

$$\hat{\alpha}_{IV} = \frac{\hat{E}[Y|Z = 1] - \hat{E}[Y|Z = 0]}{\hat{E}[X|Z = 1] - \hat{E}[X|Z = 0]} = \frac{-0.21\%}{22.80\%} = -0.92\%,$$

which suggests a risk reduction of approximately 1 event per 100 patients treated with coxibs.

However, several important questions about this result remain unanswered. To what extent could a residual association between an unmeasured GI risk factor and the IV bias this estimate? In what direction would this bias be expected to operate? How might treatment effect heterogeneity lead to fur-
Table 1: Distribution of GI risk factors and recent/concomitant therapies across levels of the exposure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coxib Users</th>
<th>NSAID Users</th>
<th>Prevalence Difference and 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female Gender</td>
<td>85.89%</td>
<td>81.11%</td>
<td>4.79% (4.09 - 5.48%)</td>
</tr>
<tr>
<td>Age ≥ 75</td>
<td>75.08%</td>
<td>65.28%</td>
<td>9.80% (8.95 - 10.64%)</td>
</tr>
<tr>
<td>History of GI Bleed</td>
<td>1.71%</td>
<td>1.11%</td>
<td>0.60% (0.39 - 0.81%)</td>
</tr>
<tr>
<td>History of Peptic Ulcer Disease</td>
<td>3.71%</td>
<td>2.41%</td>
<td>1.29% (0.99 - 1.60%)</td>
</tr>
<tr>
<td>History of Cardiovascular Problems</td>
<td>16.42%</td>
<td>14.76%</td>
<td>1.67% (1.00 - 2.33%)</td>
</tr>
<tr>
<td>Recent/Concomitant Medications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concomitant Use of GI-protective Drugs</td>
<td>5.08%</td>
<td>4.00%</td>
<td>1.08% (0.70 - 1.46%)</td>
</tr>
<tr>
<td>Recent Use of GI-protective Drugs</td>
<td>27.34%</td>
<td>20.41%</td>
<td>6.93% (6.16 - 7.70%)</td>
</tr>
<tr>
<td>Recent Use of Glucocorticoids</td>
<td>8.73%</td>
<td>7.80%</td>
<td>0.94% (0.44 - 1.44%)</td>
</tr>
<tr>
<td>Recent Use of Warfarin</td>
<td>13.25%</td>
<td>6.53%</td>
<td>6.71% (6.19 - 7.23%)</td>
</tr>
</tbody>
</table>
Table 2: Distribution of GI risk factors and recent/concomitant therapies across levels of the instrument

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coxib Preference</th>
<th>NSAID Preference</th>
<th>Prevalence Difference and 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female Gender</td>
<td>84.43%</td>
<td>84.13%</td>
<td>0.30% (-0.48 - 1.08%)</td>
</tr>
<tr>
<td>Age ≥ 75</td>
<td>72.59%</td>
<td>71.42%</td>
<td>1.17% (0.21 - 2.13%)</td>
</tr>
<tr>
<td>History of GI Bleed</td>
<td>1.46%</td>
<td>1.39%</td>
<td>0.06% (-0.19 - 0.32%)</td>
</tr>
<tr>
<td>History of Peptic Ulcer Disease</td>
<td>3.25%</td>
<td>3.05%</td>
<td>0.20% (-0.17 - 0.57%)</td>
</tr>
<tr>
<td>History of Cardiovascular Problems</td>
<td>15.67%</td>
<td>14.98%</td>
<td>0.70% (-0.70 - 1.46%)</td>
</tr>
<tr>
<td>Recent/Concomitant Medications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concomitant Use of GI-protective Drugs</td>
<td>4.61%</td>
<td>4.58%</td>
<td>0.03% (-0.04 - 0.04%)</td>
</tr>
<tr>
<td>Recent Use of GI-protective Drugs</td>
<td>24.52%</td>
<td>24.20%</td>
<td>0.32% (-0.60 - 1.24%)</td>
</tr>
<tr>
<td>Recent Use of Glucocorticoids</td>
<td>8.33%</td>
<td>8.03%</td>
<td>0.30% (-0.29 - 0.88%)</td>
</tr>
<tr>
<td>Recent Use of Warfarin</td>
<td>11.80%</td>
<td>9.99%</td>
<td>1.81% (1.15 - 2.47%)</td>
</tr>
</tbody>
</table>
ther bias in this estimator relative to the average effect of treatment in the population?

In the following sections we consider how our sensitivity analysis framework may illuminate these issues. To simplify exposition and to facilitate intuition, we consider two scenarios: one in which the exclusion restriction is violated, but the average effect of treatment does not vary with the unmeasured variable \(U \); and another in which the exclusion restriction holds, but the average treatment effect varies with \(U \).

4.1 Scenario 1: Average treatment effect does not vary with \(U \), but the exclusion restriction is violated

If we assume that the average effect of treatment is the same across levels of \(U (\alpha_3 = 0) \), then bias in the OLS estimator is given by

\[
BIAS(\hat{\alpha}_{OLS}) = \alpha_2 (E[U|X = 1] - E[U|X = 0]).
\]

The term \(E[U|X = 1] - E[U|X = 0] \) is the difference in the prevalence of the risk factor between levels of treatment. The bias in the conventional estimator of the treatment effect is this prevalence difference multiplied by the excess risk of the outcome among patients with \(U = 1 \).

The violation of the exclusion restriction tells us that \(E[U|Z] \neq E[U] \). Therefore, the asymptotic bias in the IV estimator is given by

\[
BIAS(\hat{\alpha}_{IV}) = \alpha_2 \frac{E[U|Z = 1] - E[U|Z = 0]}{E[X|Z = 1] - E[X|Z = 0]}.
\]

The term \(E[U|Z = 1] - E[U|Z = 0] \) is the difference in the prevalence of the risk factor between levels of the instrument. The total bias in the IV estimator is this difference multiplied by the excess risk of the outcome among patients with \(U = 1 \) divided by the strength of the instrument. This expression illustrates the importance of instrument strength – as the IV gets weaker the denominator gets smaller and the bias term increases without bound. Thus, even a small violations of the exclusion restriction can lead to large bias if the instrument is weak.\(^2\)

\(^2\)See Bound et al (1995) and Small and Rosenbaum (in press) for discussions of problems with weak instruments.
Table 3: Imbalance of GI risk factors across levels of the instrument relative to imbalance across levels of treatment

| Variable | Prevalence Difference Ratio | \(\frac{E[U^*|Z=1] - E[U^*|Z=0]}{E[U^*|X=1] - E[U^*|X=0]} \) |
|----------|-----------------------------|---------------------------------|
| **Patient Characteristics** | | |
| Female Gender | 6% | |
| Age ≥ 75 | 12% | |
| History of GI Bleed | 10% | |
| History of Peptic Ulcer Disease | 16% | |
| History of Cardiovascular Problems | 42% | |
| **Recent/Concomitant Medications** | | |
| Concomitant Use of GI-protective Drugs | 3% | |
| Recent Use of GI-protective Drugs | 5% | |
| Recent Use of Glucocorticoids | 32% | |
| Recent Use of Warfarin | 27% | |

For the IV to have less asymptotic bias than OLS,

\[
\frac{E[U|Z = 1] - E[U|Z = 0]}{E[U|X = 1] - E[U|X = 0]} < E[X|Z = 1] - E[X|Z = 0].
\]

In other words, the difference in the prevalence of \(U \) between levels of \(Z \) relative to the difference in the prevalence of \(U \) between levels of \(X \) must be less than the strength of the instrument.

Although \(U \) is assumed to be an unmeasured variable, the plausibility of this condition can be explored by using the measured variables as proxies for \(U \). In column 3 of table 1, we report the difference in prevalence between treatment groups for all measured risk factors and the variables capturing concomitant and recent medication use. In column 3 of table 2, we report the difference in prevalence between groups defined by the instrument for the same risk factors. In table 3, we report the ratio of these two statistics, which we term the prevalence difference ratio (PDR). For the IV to reduce bias relative to the conventional estimator, we would like for the ratio of these imbalances to be less than the strength of the instrument (i.e., about 23%).

Most of the PDRs from table 3 were smaller than strength of the IV in this study. Three variables, however, raise some concerns. First, recent glucocorticoid use had a PDR of 32% (larger than the desired 23%), although it
was not significantly associated with the IV. Secondly, recent use of warfarin had a statistically significantly association with the instrument and its PDR was 27% (also slightly more than the desired 23%). Finally, the PDR associated with a history of cardiovascular problems was 56%, although it was not significantly associated with the instrument.\(^3\)

Instrumental variable methods can make statistical adjustments for these potentially problematic measured covariates; however, the residual associations between the instrument and several observed variables raise the possibility of associations between the instrument and important unmeasured variables. In particular, the associations between the instrument and two different treatment modalities (warfarin and glucocorticoids) suggest that physicians who frequently prescribe coxibs practice differently from physicians who prefer to prescribe non-selective NSAIDs. Fortunately, there are relatively few actions that a physician could take to alter a patient’s short-term GI risk and those can be measured well in health care utilization data. For example, we can take account of all medications that a patient might use that could affect GI risk. In studies of all-cause mortality, strong residual associations between the IV and other treatment modalities would be more concerning as there may be many ways physicians affect mortality risk.\(^4\)

As expected, we found that coxib exposure was positively associated with GI risk factors. To the extent that exposure has a similar association with unmeasured GI risk factors, confounding bias would cause the conventional analysis to underestimate the average effect of coxib treatment in the population. Similarly, we found that the IV had a weak positive association with some GI risk factors. To the extent that the IV has a similar association with unmeasured GI risk factors, violations of the exclusion restriction would have caused the IV estimator to underestimate the average effect of coxib treatment in the population. We found, however, that the PDR for most variables, particularly patient characteristics strongly related to GI risk, was less than 23%; therefore we think that the degree of underestimation in the IV approach is likely to be smaller than in the conventional analysis.

\(^3\)A history of cardiovascular problems is not clearly a GI risk factor, but it may be correlated with other GI risk factors such as obesity and smoking status.

\(^4\)See Ray (2006) for a discussion of the increased potential for confounding in studies of all-cause mortality.
4.2 Scenario 2: Exclusion restriction holds, but average treatment effect varies with U

In this section, we assume that the exclusion restriction holds, so $E[U|Z = 1] - E[U|Z = 0] = 0$, but the average treatment effect varies with U, so that $\alpha_3 \neq 0$. Here we imagine U to be an unmeasured patient risk factor that is a source of treatment effect heterogeneity.

Under these assumptions, the asymptotic bias in the IV estimator is given by

$$BIAS(\hat{\alpha}_{IV}) = \alpha_3 E[U] \left[\frac{E[X|Z = 1, U = 1] - E[X|Z = 0, U = 1]}{E[X|Z = 1] - E[X|Z = 0]} - 1 \right].$$ (6)

The denominator is the strength of the instrument in the population. The numerator is the strength of the instrument among people with $U = 1$, e.g., those with a particular unmeasured GI risk factor. From this expression we can make two immediate observations. First, if the strength of the instrument is the same in both groups defined by U, then the bias is zero. Second, if the instrument is not predictive of exposure among patients with $U = 1$, i.e., $E[X|Z = 1, U = 1] - E[X|Z = 0, U = 1] = 0$, then the bias is equal to $-\alpha_3 E[U]$. Thus, the IV estimates the average effect of treatment among people with $U = 0$. This would be the case if a patient with the risk factor were equally likely to be treated by either type of physician. One extreme example of this would be patients who are always treated or never treated.

Next we consider how subject-matter knowledge of medical practice patterns can be used to anticipate the magnitude and direction of this bias term.

4.2.1 Bias in the IV estimator when medications or procedures are overused in the population under study

During the period of our study, coxibs were thought to be generally overused, more likely to be prescribed to patients who did not need them than to be withheld from patients who needed them (Desmet et al, 2006). Let U denote an unmeasured GI risk factor (e.g., smoking status) that is observed by the physician and could modify the effect of coxib exposure. If coxibs are overused, then patients who have an indication for a coxib are likely to get a coxib from either type of physician. The additional people being treated by physicians with $Z = 1$ are those who are less likely to benefit from a coxib. In this scenario, $0 \leq E[X|Z = 1, U = 1] - E[X|Z = 0, U = 1] < E[X|Z = 1] -$
If $\alpha_3 < 0$, the bias is bounded as follows

$$0 < \text{BIAS}(\hat{\alpha}_{IV}) \leq -\alpha_3 E[U].$$

Here the IV estimator is over-weighting the effect of treatment in the low-risk group.

To better understand this bias, consider the extreme example in which all patients who could benefit from a coxib would get one regardless of the physician’s preference. In this case, Z will have no marginal association with the outcome $(E[Y|Z = 1] - E[Y|Z = 0] = 0)$, and the IV estimand will be zero. The IV is reflecting the effect of treatment in a population of patients who would not benefit from treatment with coxibs and thus underestimates the average effect of coxib exposure in the larger population.

4.2.2 Bias in the IV when medications or procedures are underused in the population under study

In many cases, medications and medical procedures are thought to be underused, in that they are not given to many patients who might benefit from them. One well-known example is bone resorption agents that are used to treat osteoporosis (Solomon et al, 2003b). If these medications are underused, we would expect the instrument to be more strongly related to treatment among those with clinically evident osteoporosis (e.g., low bone mineral density test results, history of osteoporotic fractures) than among an entire population of older women. If U indicates a risk factor for a fracture, we anticipate that $E[X|Z = 1, U = 1] - E[X|Z = 0, U = 1] > E[X|Z = 1] - E[X|Z = 0]$. If $\alpha_3 < 0$, then $\text{BIAS}(\hat{\alpha}_{IV}) < 0$. Here, the IV estimator is extrapolating the treatment effect of bone resorption agents in a high-risk group to the entire population. If treatment is more effective in high-risk patients and the instrument is also stronger within this group, treatment effect heterogeneity would lead preference-based IV estimators to exaggerate the protective effect of medications or procedures at the population level.

4.2.3 Bias in the IV estimator when medications or procedures are misused in the population under study

In some cases, medications or medical procedures may be misused, in the sense that they may be given to patients with specific contraindications, or necessary follow-up tests are not performed after patients have been started on a medication. Preference-based IV studies of drugs or procedures that are commonly misused can be subject to counter-intuitive biases.
For example, consider a study that compares the safety of metformin to other oral antihyperglycemic drugs used to treat Type II diabetes. Metformin is contraindicated in patients with decreased renal function or liver disease, as it can cause lactic acidosis, a potentially fatal side effect. We speculate that physicians who infrequently use metformin will be less likely to understand its contraindications and therefore would be more likely to misuse it. Let U be an indicator of decreased renal function or liver disease. If our hypothesis is true, then $E[X|Z = 1, U = 1] - E[X|Z = 0, U = 1] < 0$. In other words, physicians with $Z = 1$ are less likely than physicians with $Z = 0$ to prescribe metformin to patients with a contraindication. In this case, a preference-based IV could make metformin appear to prevent lactic acidosis, as patients of physicians with $Z = 1$ are at lower risk of being inappropriately treated.

4.2.4 Empirically evaluating the magnitude and direction of bias due to treatment effect heterogeneity

The results from this section suggest that we can look for evidence of bias due to treatment effect heterogeneity using observed data. The expression (6) for the bias depends on the strength of the instrument within the sub-population defined by $U = 1$ relative to the strength of the instrument in the entire population. Because U is a variable that is assumed to be unobserved, we propose to use measured factors as proxies for U. If the strength of the instrument varies strongly across different subgroups defined by observed factors, we would anticipate that instrument strength is likely to vary across subgroups defined by unobserved variables leading the IV estimator to be inconsistent for the average effect of treatment in the population.

For example, we have speculated that, consistent with other research, coxibs are likely to be overused in our study population (Desmet et al, 2006). To evaluate this assertion, we examined whether the strength of the instrument in the population was different from the strength of the instrument within specific subgroups. If coxibs are overused, we would expect the IV to be weaker within subgroups defined by strong GI risk factors.

Table 4 presents the strength of the instrument within subgroups defined by measured variables. We observed that the IV was slightly weaker within strata of the strongest GI risk factors. However, in only one subgroup did the difference in instrument strength reach statistical significance (among recent users of warfarin). To the extent that coxib exposure is more effective (on a risk difference scale) in high risk patients, treatment effect heterogeneity may have caused our IV estimand to slightly understate the average protective effect of coxib exposure in our population.

DOI: 10.2202/1557-4679.1072
Table 4: Strength of the instrument in subgroups defined by observed GI risk factors

<table>
<thead>
<tr>
<th>Variable</th>
<th>Instrument Strength</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>U^*</td>
<td>$E[X</td>
<td>U^* = 1, Z = 1]$</td>
</tr>
<tr>
<td>$-E[X</td>
<td>U^* = 1, Z = 0]$</td>
<td></td>
</tr>
</tbody>
</table>

Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Instrument Strength</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Population</td>
<td>22.8%</td>
<td>21.8 - 23.8%</td>
</tr>
<tr>
<td>Female Gender</td>
<td>22.1%</td>
<td>21.1 - 23.2%</td>
</tr>
<tr>
<td>Age ≥ 75</td>
<td>23.1%</td>
<td>21.9 - 24.2%</td>
</tr>
<tr>
<td>History of GI Bleed</td>
<td>18.2%</td>
<td>10.3 - 26.2%</td>
</tr>
<tr>
<td>History of Peptic Ulcer Disease</td>
<td>18.9%</td>
<td>13.5 - 24.3%</td>
</tr>
<tr>
<td>History of Cardiovascular Problems</td>
<td>22.6%</td>
<td>20.0 - 25.1%</td>
</tr>
</tbody>
</table>

Recent/Concomitant Medications

<table>
<thead>
<tr>
<th>Category</th>
<th>Instrument Strength</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concomitant Use of GI-protective Drugs</td>
<td>18.7%</td>
<td>14.1 - 23.2%</td>
</tr>
<tr>
<td>Recent Use of GI-protective Drugs</td>
<td>20.1%</td>
<td>18.1 - 22.0%</td>
</tr>
<tr>
<td>Recent Use of Glucocorticoids</td>
<td>19.7%</td>
<td>16.2 - 23.2%</td>
</tr>
<tr>
<td>Recent Use of Warfarin</td>
<td>14.9%</td>
<td>12.1 - 17.7%</td>
</tr>
</tbody>
</table>

4.2.5 Interpretation of preference-based IV estimands in the presence of treatment effect heterogeneity

We suggested earlier that the concept of a “marginal” patient may not be clear when using preference-based instruments, as patients can be marginal to differing degrees. We extend the results of the previous section to describe the target of IV estimation in the setting of preference-based IV methods and treatment effect heterogeneity.

First, suppose that the study population can be decomposed into a set of $k + 1$ mutually exclusive groups of patients with common clinical and lifestyle characteristics. Patient membership in these groups is denoted with the vector of indicators, $S = [S_1, S_2, \ldots, S_k]^T$. Group membership is observed by the clinician but is unrecorded in the data file. We generalize our structural model (3) as follows

$$Y_x = \alpha_0 + \alpha_1 x + \alpha_2 S + \alpha_3 S x + \epsilon_x,$$

with $E[\epsilon_x|S] = 0$ for $x \in \{0, 1\}$. Here α_2 and α_3 are row vectors of coefficients. The average effect of treatment in the population is given by $\alpha_1 + \alpha_3 E[S]$. We assume that $E[\epsilon_0|Z] = 0$ and that there is no relevant heterogeneity beyond S, so that $E[\epsilon_0 - X(\epsilon_1 - \epsilon_0)|Z] = E[\epsilon_0 - X(\epsilon_1 - \epsilon_0)]$.

17
Assuming that $E[S|Z] = E[S]$, we can extend the results from the previous section to show that

$$\frac{E[Y|Z = 1] - E[Y|Z = 0]}{E[X|Z = 1] - E[X|Z = 0]} = \alpha_1 + \sum_{j=1}^{k} \alpha_{3,j}E[S_j]w_j,$$

The estimated treatment effect turns out to be a “weighted average” of treatment effects in different sub-groups, where the weights are given by

$$w_j = \left[\frac{E[X|Z = 1, S_j = 1] - E[X|Z = 0, S_j = 1]}{E[X|Z = 1] - E[X|Z = 0]} \right],$$

and thus could be negative or have absolute values greater than one.

The interpretation of the weights follows from the previous discussion of treatment effect heterogeneity. If the instrument is stronger in sub-group j than in the population, then the sub-group weight is greater than one and the effect of treatment in that sub-group is up-weighted. If the instrument is weaker in sub-group j than in the population, the sub-group weight is less than one and the effect of treatment in that sub-group is down-weighted. If the effect of the instrument is reversed in sub-group j, e.g., in the case of contraindications, the weight will be negative. Lastly, if the IV does not predict treatment in a particular group, than the weight is zero and the effect of treatment in that sub-group is not reflected in the IV estimand.

For example, consider the case of statins, cholesterol-lowering drugs that are thought to be substantially underused, in that they are not given to many patients who might benefit from them (Majumdar et al, 1999). Suppose we are doing a typical study using health care claims data to assess the effectiveness of statins in a population at-risk of an acute coronary event. Using health care claims data, we attempt to identify a study population consisting of people with at least one cardiovascular risk factor, e.g., patients with a diagnosis of hypertension, unstable angina, myocardial infarction, diabetes, or hypercholesterolemia. In this population there is still considerable variation in underlying risk. We speculate that those at greatest risk, e.g., those who smoke, are overweight, and who have a history of myocardial infarction, will be treated with statins by many physicians. Therefore the contribution of the treatment effects in the highest-risk group could be down-weighted. Similarly, those at lowest risk may be treated by few physicians of either type, and their contribution to the IV estimate would also be down-weighted. The instrument may be the strongest among patients at moderate risk, so the IV estimate may tend to reflect the effect of treatment in these patients. In the case of statins,
which are relatively safe with few contraindications, there are not likely to be pathologies that would lead a small sub-group to have a very large negative weight.

Finally, we note that one can explore the likely magnitude and directions of these weights empirically. As we proposed earlier, by assessing the strength of the instrument within sub-groups, researchers can gather evidence about important differences in practice patterns between physicians with $Z = 1$ and those with $Z = 0$. For example, to explore the plausibility of our hypothesis about statin prescribing, we could examine the strength of the IV across a range of sub-groups of varying degrees of cardiovascular risk according to the observed variables.

5 Discussion

We have discussed issues related to the validity and interpretation of studies using preference-based instrumental variables that are defined at the level of a health care provider or an aggregation of providers. We have illustrated various ways that observed variables can be used as proxies for unobserved confounders to anticipate the direction of bias due to violations of IV assumptions. Using these variables, we provided a benchmark to assess whether the IV approach is likely to reduce confounding bias relative to a conventional estimator of treatment effect. We have also described how one can use observed variables and subject matter knowledge to anticipate the direction of bias in a standard IV estimator due to treatment effect heterogeneity.

The ideas discussed in this paper were presented in the context of a study of the short-term risk of GI bleeding among elderly new users of non-selective, non-steroidal anti-inflammatory drugs. The analysis based on the methods described herein suggested that, in the absence of treatment effect heterogeneity, violations of the exclusion restriction may have caused our IV estimate to slightly underestimate the average effect of coxib treatment in the population. This is due primarily to the IV having a weak positive association with some GI risk factors and recent use of medications that can increase GI risk. To the extent the measured variables are reasonable proxies for the unmeasured variables, our analysis suggested that the bias in the IV is likely to be smaller than the bias in a conventional analysis.

We also found that treatment effect heterogeneity may have led to a modest difference between the IV estimand and the average treatment effect in the population. Empirical data suggest that patients at lower GI risk were slightly more likely to have had their treatment influenced by the IV. According to the
framework we have described, the contribution of the effect of treatment in these patients may be slightly up-weighted by the IV estimator. To extent that coxibs may be less effective (on a risk difference scale) in lower-risk patients, treatment effect heterogeneity would have caused the IV estimator to further understate the average protective effect of coxibs in the population.

In the expressions for bias that we have derived, it is assumed that the parameter of interest is the average effect of treatment in the population under study. This parameter is of inherent interest as it is what would be estimated by an RCT conducted in the population. However, in many observational studies of drugs and medical procedures, the population under study may include many patients for whom there is little clinical equipoise (i.e., patients who would be rarely or almost always treated). In these settings, other measures of treatment effect may be of greater interest. For example, when many patients are appropriately untreated, one may be more interested in the average effect of treatment on those who received treatment (the effect of treatment on the treated). When drugs are underused in the population under study, and the IV affects treatment in a small, high-risk segment of the population, the IV estimand is likely to be closer to the average effect of treatment in the treated than the average effect of treatment in the population.

Our study is limited by the simplicity of our analytic framework. We have considered bias in a standard IV estimator with a single dichotomous instrument, unmeasured covariate, and treatment. For more complex situations involving non-linear models, continuous treatments, and multiple continuous instruments, the analyst will need to use subject-matter expertise to make assumptions about both the model for the treatment choice and outcome. When treatment effects are heterogeneous, the interpretation of the effect estimate can depend on the assumptions one makes about these models. Our results will not immediately apply to these more complex settings.

As with any analysis of observational data, studies using preference-based IV methods rely on assumptions that cannot be verified with observed data. In many cases, these assumptions will not completely hold, and IV methods may lead to estimates that are both highly biased and excessively variable. We have outlined an approach that can be used to assess the likely extent of the problem. Further research may reveal additional ways to evaluate the validity of preference-based IV methods or to improve them through study design or statistical innovations.
References

